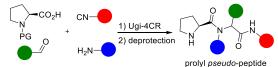


Multicomponent Combinatorial Development of Prolyl Pseudo-Peptide Catalysts: Application in the Direct Asymmetric Michael Addition

Alexander F. de la Torre,[†] Daniel G. Rivera,^{†,‡} Marco A. B. Ferreira,[†] Arlene G. Corrêa [†] and Márcio W. Paixão[†]


† Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 97105-900, Brazil. *‡* Center for Natural Products Study, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba.

*e-mail corresponding author: alexanderfndzdelatorre@hotmail.com

Keywords: Organocatalysis, Michael addition, Multicomponent Reactions

INTRODUCTION

Oligopeptidic scaffolds are an important class of organocatalysts, which have found remarkable applications in a wide range of catalytic asymmetric transformations.^{1,2} In this way, MCRs may offer a greater promise in the field of peptide catalysis. The classic Ugi-4CR has been successful applied for the preparation of pseudo-peptidic skeletons, including N-alkylated peptides and a wide variety of peptidomimetic by combinatorial procedures – whereas, each of the four starting materials can be easily altered (Scheme 1).³ Taking into account that the MCRs have not yet been used for organocatalysts discovery, we focused our attention, ton the implementation of Ugi-4CR as a powerful tool to access new class of prolyl *pseudo*-peptides and therefore, apply them in asymmetric Michael reaction.

Scheme 1. Synthesis of new class of prolyl *pseudo*-peptides organocatalysts by Ugi-4CR

RESULTS AND DISCUSSION

A small library of Prolyl *pseudo*-peptides was obtained in good to excellent yields (61-93%) by Ugi-4CR protocol. These catalysts were then tested on the directed asymmetric Michael addition (Table 1). Most pseudo-peptides catalyzed the reaction in good to excellent enantio- and diastereoselectivities, where organocatalyst **9** presented the best results in terms of stereocontrol (98% ee, 94:6 dr, entry 9).

Lowest-energy structure of the E-enamine by a theoretical study, shows a significant shielding of the peptidic skeleton to the Re-face (Figure 1, **a**) which explains the high enantioselection provided by catalyst **9** and the syn predomination isomer by a Si-Si attack approach (Figure 1, **b**)

Table 1. Screening of the enamine-catalytic performance of pseudo-peptides 1-12 in the asymmetric Michael addition $\int_{0}^{0} B_{k}^{2} B_{k}^{2}$

	Et	N N R ³ 10 mol% toluene, rt, 24 h	O Ph NO ₂	
Entry	R ¹ /R ² /R ³	Yield	syn:anti ^c	ee
		(%) ^b		(%) ^d
1	Gly-OMe/H/Cy (1)	87	96:4	90
2	Val-OMe/H/Cy (2)	92	92:8	91
3	Leu-OMe/H/Cy (3)	83	97:3	79
4	Ile-OMe/H/Cy (4)	89	97:3	90
5	Phe-OMe/H/Cy (5)	84	93:7	64
6	^t BuGly-OMe/H/Cy ⁽⁶⁾	94	90:10	82
7	(S)-α-MeBn/H/Cy (7)	74	96:4	89
8	Bn/H/Cy (8)	91	93:7	92

12 (S)-α-MeBn/H/Gly-ÒMe (12) 77 89:11 85 ^aAll reactions were conducted using 3 equiv of the aldehyde. ^bYield of isolated product as mixture of syn/anti adducts. ^cDetermined by ¹H-NMR spectroscopy and HPLC analysis. ^dDetermined by chiralphase HPLC analysis on the major diastereomer.

85

84

93

94:6

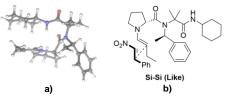
94:6

94:6

98

87

91


(S)-α-MeBn/Me/Cy (9)

Bn/Me/Cy (**10**) (S)-α-MeBn/H/t-Bu (**11**)

q

10

11

Figure 1. a) Lowest-energy structure of the anti enamine derived from catalyst **9** at M06-2X/6-31+G(d,p)//M06-2X/6-31G(d) [SDM, toluene] level. **b)** Si-Si attack approach of enamine.

CONCLUSION

We have demonstrated the Ugi-4CR-based generation of a new prolyl *pseudo*-peptides combinatorial library and the screening of their catalytic efficacy in the asymmetric conjugate addition of aldehydes to nitroolefins in excellent stereocontrol.

ACKNOWLEDGEMENTS

FAPESP, CNPq and CAPES for financial support.

REFERENCES

 ¹ E. A. Colby Davie, S. M. Mennen, Y. Xu, S. J. Miller, Chem. Rev. 2007, 107, 5759–5812.
² Revell, J. D.; Wennemers, H. *Curr. Opin. Chem. Biol.* 2007, 11, 269–278.

³A. Dömling, W. Wang, K. Wang, *Chem. Rev.* **2012**, *112*, 3083–3135.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil