

New strategy for the synthesis of 4-amine-2-trifluoromethyl pyrroles N-substituted

Estefania da C. Aquino*, Nilo Zanatta, Vanessa C. Gariboti, Helio G. Bonacorso and Marcos A. P. Martins

Núcleo de Química de Heterociclos - NUQUIMHE, Departamento de Química, Universidade Federal de

Santa Maria, 97105-900 - Santa Maria, RS, Brazil

*Corresponding author. Tel.: +55 55 32208756 e-mail: estefaniacaquino@gmail.com

Keywords: β-enaminones trifluoromethylated, amines, pyrroles

INTRODUCTION

Pyrroles are one the most important class of heterocyclic compounds that are frequently found in many natural products and bioactive molecules.¹ Furthermore, trifluoromethyl substituted pyrroles are rare compounds; however, they have been show to exhibit significant insecticidal and acaricidal activity.² The introduction of fluorine atoms and fluorinated groups into organic molecules often confers significant and useful changes in their chemical and physical properties.³ Fluorinated enaminones are also very attractive synthons with high potential for the synthesis of fluorinated heterocycles.

In this work, we present a versatile approach for the synthesis of a new series of 4-amine-3trifluoromethyl pyrroles *N*-substituted from β enaminones trifluoromethylate 2 with amines.

RESULTS AND DISCUSSION


Scheme 1 presents the synthesis of pyrroles 3a-k. Initially, diisobutilamine was added dropwise to enone 1 in CH_2CI_2 at 0°C to give an enaminone 2. The primary amine is reacted with the enaminone 2 and then intramolecular cvclization occurs to form the desired pyrroles 3. The reaction was performed with solvent free methodology using a sealed tube at 120 ° C for 15 min., only for the amine j the reaction time was 30 min. The reaction mixture was diluted 3% with ethyl acetate and extracted with hydrochloric acid mL) solution (1x10 and subsequently with water (2x10 mL). The organic phase was dried with anhydrous sodium sulfate and concentrated in a rotary evaporator.

In Table 1 are show the amines used and yields obtained for compounds 3a-k.

Table 1. Optimized yields and amines used for the synthesis of compounds 3a-k.

Product 3	Amine (NH ₂ R)	Yield (%)	Product 3	Amine (NH ₂ R)	Yield (%)
e	butylamine allylamine benzylamine phenethylamine aniline 2-fluoroaniline	93 94 89 95 98 88	g h j k	3-fluoroaniline 4-fluoroaniline 4-methoxyaniline 4-nitroaniline ethane-1,3-diamine	90 96 93 50 89

Scheme 1. Synthesis of compounds 3a-k

The compounds were obtained as oil without purification. The pyrroles were analyzed by ¹H and ¹³C NMR and GC-MS (EI).

CONCLUSION

In conclusion, we demonstrated a new method of synthesis the trifluoromethyl substituted pyrroles. The compounds were obtained in good yields through a simple procedure using a sealed tube and solvent-free.

ACKNOWLEDGEMENTS

The authors thank the financial support from CNPq, CAPES, FAPERGS.

REFERENCES

¹ Zanatta, N.; Aquino, E. da C.; Silva, F. M. da; Bonacorso, H. G.; Martins, ² Zanatta, N.; Schneider, J. M. F. M.; Schneider, P. H.; Wouters, A. D.;

Bonacorso, H. G.; Martins, M. A. P.; Wessjohann, L. A. J. Org. Chem. **2006**, *71*, 6996. ³ Martins, M. A. P.; Sinhorim, A. P.; Frizzo, C. P.; Buriol, L.; Scapin, E.;

Zanatta, N.; Bonacorso, H. G. J. Heterocyclic Chem. 2013, 50, 71.

Lyutenko, N. V.; Gerus, I. I.; Kacharov, A. D.; Kukhar, V. P. Tetrahedron 2003, 59, 1731.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil