

1,3-Dipolar Cycloaddition Reactions of *meso*-Tetra(2'thienyl)porphyrins with a Nitrile Oxide

Patrícia B. Momo, Ricardo B. Ayres, Timothy J. Brocksom, Kleber T. de Oliveira*

Universidade Federal de São Carlos - UFSCar, Departamento de Química, 13565-905, São Carlos, SP,

Brazil.

*e-mail: kleber.oliveira@ufscar.br; www.lqbo.ufscar.br

Keywords: 1,3-dipolar cycloaddition, chlorins, bacteriochlorins

INTRODUCTION

Tetrathienylporphyrins have gained much interest recently due to their remarkable photophysical and electrochemical properties.¹ Derivatives such as chlorins, isobacteriochlorins and bacteriochlorins, can be synthesized by reduction with diimide or para-toluenesulfonylhydrazide, as well as oxidation with OsO₄, and Diels-Alder reactions and 1,3-dipolar cycloadditions, on the peripheral double bonds of the pyrrolic rings.^{2,3} Chlorins and bacteriochlorins have been used in several scientific areas, especially in medicine. We have now explored the 1,3-dipolar cycloaddition of 2,6-dichlorobenzonitrile oxide with tetra(2'-thienyl)porphyrins 1a-d (Scheme 1). We observed that tetra(2'-thienyl)porphyrins can react with the dipolarophile yielding chlorins and bacteriochlorins. These new compounds are candidates for use in photodynamic therapy (PDT) and solar cells studies.

RESULTS AND DISCUSSION

The 1,3-dipolar cycloaddition reactions of 2,6dichlorobenzonitrile oxide with tetra(2'metallo-tetra(2'thienyl)porphyrins and thienyl)porphyrins 1a-d yielded isoxazole-fused chlorins and bacteriochlorins (Scheme 1 and Table 1). The reactions were conducted with an excess of 2,6-dichlorobenzonitrile oxide at 80°C under argon atmosphere for 24-48 h, giving complex mixtures containing chlorins as the major product (Table 1), except for porphyrin 1c which gave chlorins and bacteriochlorins in similar yields of 13-15%. After work-up and purification, the structures of the new compounds were confirmed by ¹H NMR, ¹³C NMR, HRMS and UV/Vis spectroscopies.

We are now performing studies on aggregation in solution, singlet oxygen generation and photobleaching in order to select some compounds for PDT studies.

Scheme 1. Reaction of porphyrins **1a-d** with 2,6-dichlorobenzonitrile oxide.

 Table 1. Product yields of porphyrins 1a-d with 2.6dichlorobenzonitrile oxide.

Entry	Time (h)	3 (% yield)	4 (% yield)	5 (% yield)
1	24	(a) 13	(a) traces	(a) traces
2	24	(c) 15	(c) 13-	(c) 14
3	48	(b) 9	(b) traces	(b) traces
4	48	(d) 22	(d) traces	(d) traces

CONCLUSION

meso-Tetra(2'thienyl)porphyins **1a-d** participate in 1,3-dipolar cycloaddition reactions yielding new thienylchlorins and thienylbacteriochlorins.

ACKNOWLEDGEMENTS

The authors thank FAPESP (2011/13993-2, 2013/06532-4), CNPq and CAPES for financial support and fellowships.

REFERENCES

¹ Boyle, M. N.; Rochford, J.; Pryce, M. T. *Coord. Chem. Rev.* 2010, *254*, 7.

² Xingang, L.; Yaqing, F.; Xiaofen, H.; Xianggao, L. *Synthesis*, 2005, *20*, 3632.

³Li, X.; Zhuang, J.; Li, Y.; Liu, H.; Wang, S.; Zhu, D. *Tetrahedron Letters*, 2005, *4*6, 1555.