

Total Synthesis of Isoellipticine

Fabrício Fredo Naciuk, Rebeca Malanzuk, Luiz Antonio Mazzini Fontoura and Paulo C. M. L. Miranda*

Instituto de Química, Universidade Estadual de Campinas, SP

* miranda@iqm.unicamp.br

Keywords: Pyridocarbazole alkaloids, DNA intercalating agents, Palladium-Catalyzed C-H activation.

INTRODUCTION

The ellipticine (1), a member of pyridocarbazole family,¹ was firstly isolated at the end of 50's from the leaves of *Ochrosia elliptica*.² This alkaloid aroused interest in the pharmacologic area due its unique antitumor and anticancer properties.³ More recently, studies indicate that this compound and its derivatives also show activity against HIV.² The isoellilpticine (2), a non-natural isomer of ellipticine (1), exhibits similar biological properties, however its preparation has been little explored.⁴

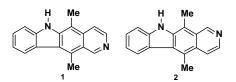
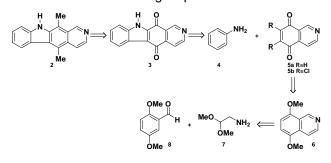
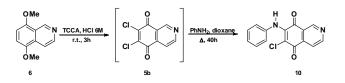
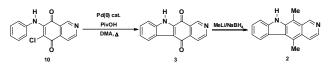



Figure 1. Strucutrue of ellipticne (1) and isoellipticine (2).


RESULTS AND DISCUSSION

The scheme 1 shows the applied retrosynthetic strategy. Originally, we intended to obtain 2 using 5a as synthetic intermediate. Although it has been successfully prepared, 5a showed reduced stability to be used in the following step.


Scheme 1. Retrosynthetic strategy to obtain isoellipticine (2).

This inconvenient was circumvented applying an oxidation/halogenation step using TCCA/HCl for preparation of 6,7-dichloroisoquinoline-5,8-dione (**5b**). So, the dione **5b** was submitted directly to the oxidative amination step to furnish **10** and its regioisomer (10:1) in 67% yield, scheme 2.

Scheme 2. Preparation of 6-chloro-7-(phenilamino)-isoquinoline-5,8-dione (**10**).

The dione **10**, in sequence, was submitted to a palladium-catalyzed C-H activation, forming **3**. The total synthesis of isoellipticine (**2**) was achieved after the reaction of quinone **11** with MeLi followed by NaBH₄ reduction in ethanol under reflux, scheme 3.

Scheme 3. Preparation of isoellipticine (2).

CONCLUSION

It was possible to prepare 6-chloro-7-(phenylamino) isoquinoline-5,8-dione (**10**) in 6 steps and 58% yield using readily available starting materials. This substrate afforded the isoellipticine (**2**) after C-H activation and metilation/reduction reactions.

ACKNOWLEDGEMENTS

The authors acknowledge CNPq and FAPESP 2009/51602-5 for the financial support.

REFERENCES

 Yarovenko, V. N.; Polushina, A. V.; Levchenko, K. S.; Zavarzin, I. V.; Krayushkin, M. M.; Kotovskaya, S. K.; Charushin, V. N.; *Russ. J. Org. Chem.* 2007, *43*, 1387.
² Konakahara, T.; Kiran, Y. B.; Okuno, Y.; Ikeda, R.; Sakai, N.; *Tetrahedron*

Lett. **2010**, *51*, 2335.

³ Gaddam, V.; Ramesh, S.; Nagarajan, R.; *Tetrahedron* **2010**, *66*, 4218.

⁴ Miller, C. M.; O' Sullivan, E. C.; Devineb, K. J.; McCarthy, F. O. Org. Biomol. Chem. **2012**, *10*, 7912.

⁵ Naciuk, F. F.; Milan, J. C.; Andreão, A.; Miranda, P. C. M. L. *J. Org. Chem.* **2013**, *78*, 5026.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil