

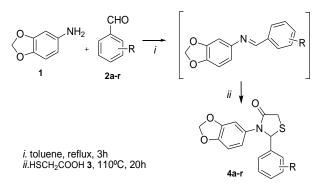
3,4-(methylenodioxy)aniline as precursor to thiazolidinones

Hellen G. Masteloto (PG), Bruna B. Drawanz (PG), Geonir M. Siqueira (PQ), Wilson Cunico^{*}(PQ)

LaQuiABio,CCQFA, UFPel, Pelotas, RS, Brazil

*wjcunico@yahoo.com.br

Keywords: Thiazolidinones, 3,4-(methylenedioxy)aniline, one-pot reaction


INTRODUCTION

The thiazolidinones are five-membered heterocyclic compounds that show a diverse range of biological activities¹, for example, as antitumor², antidiabetes³, antitubercular⁴ and anti-hepatitis C virus⁵. The main synthetic routes to thiazolidin-4ones involves a three component reaction (an aldehyde or ketone, a primary amine or hydrazine and the mercaptoacetic acid) either in an one- or two-step process.⁶ This work has as objective, report the synthesis of new thiazolidinones 4a-r arising from the reaction of 3,4-(methylenedioxy)aniline 1 with substituted arenealdehydes 2a-r and mercaptoacetic acid 3.

RESULTS AND DISCUSSION

The synthesis of unpublished thiazolidinones 4a-r, was carried out in a one-pot procedure (Scheme 1). First, the reaction of amine 1 (1 mmol) with arenealdehydes 2a-r (1 mmol) in toluene reflux using a Dean-Stark trap for 3 h afforded the imine intermediate. Afterward, the mercaptoacetic acid 3 (3 mmol) was added and the reaction progress were monitored by thin layer chromatography (TLC) and/or Gas Chromatography (GC). The products were formed after overnight reflux and the pure thiazolidinones were obtained by washing with a hot solution of hexane/ethyl acetate 9:1 (compounds 4a-I) and 8:2 (compounds 4m-r) from good to excellent yields 47-90% (Table 1). All compound structures were confirmed by mass spectrometry (CG-MS), ¹H and ¹³C Nuclear Magnetic Resonance (NMR)

Scheme 1. Synthesis thiazolidinones 4a-r

Table 1	. Yields	and	melting	points	of	thiazolidinones	4a-r.
---------	----------	-----	---------	--------	----	-----------------	-------

Product	R	yield (%) ^a	m.p. (⁰C) [⊳]	
4a	2-Cl	81	120-121	
4b	3-Cl	75	131-134	
4c	4-Cl	75	156-158	
4d	2-F	73	120-122	
4e	3-F	74	142-145	
4f	4-F	76	153-155	
4g	2-NO ₂	76	158-163	
4h	3-NO2	85	147-150	
4i	4-NO ₂	90	99-101	
4j	2-OCH ₃	84	127-130	
4k	3-OCH ₃	81	118-120	
41	4-OCH ₃	80	142-144	
4m	3-OH	74	157-160	
4n	4-OH	65	183-186	
4o	2,4-OCH ₃	47	oil	
4p	3,4-OCH ₃	74	72-75	
4q	2,3-OCH ₃	60	93-95	
4r	2,5-OCH ₃	58 Iting points are	oil	

CONCLUSION

In summary, this work showed the synthesis of eighteen new 3-(benzo[1,3]dioxol-5-yl)-2-phenylthiazolidin-4-ones from both electron-release and electron-withdraw substituted arenealdehydes. In the next step, these compounds will be submitted to biological studies.

ACKNOWLEDGEMENTS

The authors thanks: CAPES, FAPERGS and UFPel

REFERENCES

¹Jain, A. K.; Vaidya, A.; Ravichandran, V.; Kashaw, S.K.; Agrawal, R.K. *Bioorg. Med. Chem.* **2012**, 20, 3378.

O. Guzel, A. Salman, J. Med. Chem. 2009, 24, 1015.

³R. Ottana, R. Maccari, M. Giglio, A. Del Corso, M. Cappiello, U. Mura, S. Cosconati, L. Marinelli, E. Novellino, S. Sartini, C. La Motta, F. Da Settimo, *Eur. J.Med. Chem.* **2011**, 4646, 2797.

⁴ Vintonyak, V.V.; Warburg, K.; Over, B.; Hubel, K.; Rauh, D.; Waldmann, H.; *Tetrahedron* **2011**,67, 6713.

⁵R.K. Rawal, S.B. Katti, N. Kaushik-Basu, P. Arora, Z. Pan, *Bioorg. Med. Chem. Lett.***2008**, 18, 6110.

⁶Cunico, W.; Gomes, C. R. B.; Vellasco, W. T., Jr. Mini-Rev. *Org. Chem.* **2008**, 5, 336.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil