

Nickel-Catalyzed Borylation of Halides and Pseudohalides with Tetrahydroxydiboron [B₂(OH)₄]¹

Livia N. Cavalcanti* and Gary A. Molander

Roy and Diana Vagelos Laboratories and Penn/Merck Laboratory for High Throughput Experimentation, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA

*liviacavalcanti81@gmail.com

Keywords: borylation, nickel, tetrahydroxydiboron

INTRODUCTION

Arylboronic acids are important structures in organic synthesis and have also find application as biological and medicinal target.² Traditional methods to synthesize these molecules utilizes wasteful boron sources, such as bis(pinacolato) diboron (B_2Pin_2). Recently, our group developed the palladium-catalyzed synthesis of arylboronic acids employing the atom-economical tetrahydroxydiboron [$B_2(OH)_4$] reagent. The limitations associated with the method along with the high cost of palladium prompted us to develop a nickel-catalyzed borylation of aryl and heteroaryl halides utilizing BBA.

RESULTS AND DISCUSSION

After extensive screening using microscale highexperimentation throughput (HTE), it was determined that the combination of BBA (1.5 equiv), 1 mol % of NiCl₂(dppp), 2 mol % of PPh₃, and 3 equiv of DIPEA in EtOH was the best set of condition. With optimal conditions in hand, the substrate scope for aryl halides and pseudo-halides was investigated (Scheme 1). Because boronic acids are relatively unstable species, the crude reaction mixture was treated with aqueous KHF₂ to afford the more robust potassium trifluoroborate salts. The reaction proved to be efficient for a variety of aryl and heteroaryl bromides, chlorides and mesylates electrophiles. The reaction of 2-Bromonaphthalene was performed on a 48 mmol scale (10 g), providing the product in 81% yield.

The use of BBA provides direct access to different boron derivatives upon different workups of the crude mixture (Scheme 2).

Scheme 1. Ni-Catalyzed Borylation of Aryl and Heteroaryl bromides, chlorides and mesylates with BBA.

 a 48 mmol scale using 0.1 mol % of NiCl_2(dppp) and 0.2 mol % of PPh_3 in EtOH (90 mL) a 5 mol % of NiCl_2(dppp) and 10 mol % of PPh_3

CONCLUSION

A nickel-catalyzed borylation using BBA has been developed. The same set of conditions was efficient to borylate a wide array of aryl and heteroaryl bromides, chlorides and mesylates containing diverse functional groups. All reagents utilized in this method are stable and can be stored on the benchtop.

ACKNOWLEDGEMENTS

CNPq, NIGMS, NSF, AllyChem

REFERENCES

 1 Molander, G. A.; Cavalcanti, L. N. *J. Org. Chem.* **2013**, 78, 6427. 2 Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, **2011**.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil