

Glycerol as solvent to the synthesis of thiazolidinones

Gabriele dos Anjos Bervaldt (IC), Daniela Pires Gouvêa (PG), Adriana Machado das Neves (PG), Roberta Difabio (IC), Wilson João Cunico (PQ)*.

Universidade Federal de Pelotas-UFPEL

wjcunico@yahoo.com.br*

Keywords: glycerol, green solvent, thiazolidinones.

INTRODUCTION

Solvents are most utilized in organic reaction, enhanced contact among reactants. The solvents have generated great part of the pollution by chemical processes.^{1,2}

The use of green solvent is of high interesting for organic transformations. Glycerol is produced as byproduct of biodiesel, a biodegradable solvent has least volatility and negligible vapor pressure. It is compatible with most organic and inorganic compounds.²

Thiazolidinones are important five-membered heterocycles that have biological activities in the areas of medicine for example, anticancer, anti-viral, anti-microbial.³

Generally, the solvent used to the synthesis of thiazolidinones is toluene.⁴ In this work, we report the synthesis of some thiazolidinones from piperonilamine or 2-aminopyridine, arenealdehydes and mercaptoacetic acid using glycerol as solvent.

RESULTS AND DISCUSSION

The desired compounds **5a-h** and **8a-h** were obtained using a green solvent glycerol according Scheme 1. The reaction of corresponding amine **2** or **6** (5 mmol) and arenealdehydes **1a-h** (10 mmol) gave the intermediated imine that reacts with mercaptoacetic acid **4** (15 mmol) to produce the thiazolidinones.

Scheme 1. Synthesis of thiazolidinones in glycerol.

ii. 2-aminopyridine 6, glycerol 60°C, 3h.

iii. HSCH₂COOH **4**, 60°C, 16h.

After the reaction time, water was added and the precipitates obtained were filtered through over a 15th Brazilian Meeting on Organic Synthesis – 15th BM

Büchner funnel under vacuum and washed with cold water to give the products.

The thiazolidinones were obtained in moderate to goods yields. The structure of heterocycles **5a-h** and **8a-h** were confirmed by ¹H NMR and purity from CG and melting points. When necessary, the compounds were purified by washing with hot mixture of hexane/ethyl acetate 8:2.

Product	R	m.p. (ºC) ^a	Glicerol (%) ^b
5a	2-NO ₂	145-146	94
5b	3-NO ₂	137-139	88
5c	4-NO ₂	149-151	97
5d	3-OCH ₃	Oil	93
5e	4-OCH ₃	116-118	77
5f	2-F	93-94	94
5g	3-F	135-136	94
5h	4-F	95-97	56
8a	2-NO ₂	162-164	72
8b	3-NO ₂	153-155	68
8c	4-NO ₂	152-154	77
8d	3-OCH ₃	129-131	95
8e	4-OCH ₃	102-105	92
8f	2-F	78-80	71
8g	3-F	Oil	36
8h	4-F	79-82	94

Table 1. Yields and melting points of 5a-h and 8a-h.

a – melting points are uncorrected. b – yields of pure compounds.

CONCLUSION

In summary, glycerol was an efficient solvent to promote the synthesis of thiazolidinones. This procedure can be used as a replacement for toxic solvents as toluene.

ACKNOWLEDGEMENTS

The authors thank CAPES, CNPq, FAPERGS and UFPel.

REFERENCES

¹ Wolfson, A.; Snezhko, A.; Meyouhas, T.; Dorith T. *Green Chem. Letters Rev.***2012**, *5*, 7.

² Wolfson. A.; Dlugy, C.; Shotland, Y.; *Environ. Chem. Lett.* **2007**, 5, 67.

³ Jain, A.K.; Vaidya, A.; Ravichandran, V.; Kashaw, R.K.A. *Bioorg. Med. Chem.* **2012**, *20*, 3378.

⁴ Gouvêa, D.P; Bareño,V.D.O.; Bosenbecker, J.; Drawanz, B.B.; Neuenfeldt, P.D.; Siqueira, G.; Cunico, W.; Ultrason Sonochem. **2012**, 19, 1127.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil