

Synthesis of Piperidines from *Z*-α,β-Unsaturated Diazoketones

Isac G. Rosset, Antonio C. B. Burtoloso*

Universidade de São Paulo, Av. Trabalhador São-carlense, 400, CEP 13566-590, São Carlos, SP - Brazil

*antonio@iqsc.usp.br

Keywords: Diazoketones, piperidine, Z-α,β-Unsaturated Diazoketones

INTRODUCTION

Piperidine systems are highly widespread in many natural products of great pharmaceutical interest.¹ These systems have many interesting biological activities, such as anticancer and anti-HIV.² In this work, we describe the stereoselective preparation of *Z*- α , β -unsaturated diazoketones from aldehydes and their conversion to substituted dihydropyridin-3-ones like **3** in just one step after an intramolecular N-H insertion reaction. The application of this chemistry in the direct synthesis of the natural 3,4,5-trihydroxypiperidine **4** is also described (Fig 1).

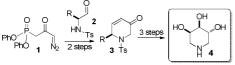


Fig. 1. Direct synthesis of Piperidine systems.

RESULTS AND DISCUSSION

Three new Ando-type phosphonates, containing a diazo group, were synthesized (Fig. 2) and employed in the HWE reaction (Tab 1), aiming the preparation of the *Z*-unsaturated diazoketones.

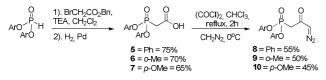


Fig. 2. Synthesis of diazophosphonates.

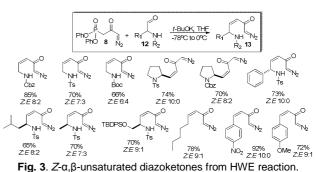

First, we studied the preparation of the Z- α , β unsaturated diazoketones, using benzaldehyde as a model in the HWE reaction.

Table 1. Optimization of HWE reaction to $Z\text{-}\alpha,\beta\text{-}unsaturated$ diazoketones synthesis.

PhO PhO PhO 8 N ₂ + PhCHO PhO 8 N ₂ + PhCHO -78°C to 0°C 11 N ₂			
Entry	Base	Yield (%)	Z: E ratio ^a
1	NaH	63	7:3
2 ^b	NaH	97	7:3
3	DIPEA	11	1:1
4	BuLi	41	6:4
5	<i>t</i> -BuOK	92	9:1
6°	t-BuOK	80	8.2

^aMeasured by ¹H NMR. ^b2 equiv. of the phosphonate anion was employed. ^c3 equiv. of 18-crown-6 ether was used as additive.

Next, to show the scope of the methodology, new Z- α , β -unsaturated diazoketones with aliphatic, aryl and amino groups were prepared in good yields and selectivity (Fig. 3).

These diazoketones were converted to substituted

dihydropyridin-3-ones after an intramolecular N-H insertion reaction and applied to the synthesis of (+/-)-(3R,5R)-piperidine-3,4,5-triol **4**, an α -glycosidase and β -galactosidase inhibitor isolated from *Eupatorium fortunei TURZ*³ (Fig. 4).

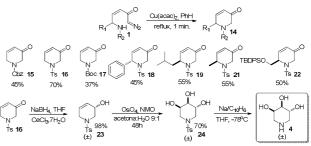


Fig. 4. N-H insertion reaction and synthesis of (+/-)-(3R,5R)-piperidine-3,4,5-triol.

CONCLUSION

We have developed a two-step method for the easy access to highly functionalized piperidine systems, such as dihydropyridin-3-ones, from aldehydes⁴. The sequence is direct and permits the synthesis of several types of hydroxylated piperidines.

ACKNOWLEDGEMENTS

FAPESP, Capes and CNPq

REFERENCES

¹Overhand, M.; Hecht, S. M. *J. Org. Chem.* **1994**, 59, 4721–4722. ²Pak, C. S.; Lee, G. H. *J. Org. Chem.* **1991**, 56, 1128–1133. ³Sekioka, T.; Shibano, M.; Kusano, G. *Nat. Med.* **1995**, 49, 332–335. ⁴Rosset, I. G. Burtoloso A. C. B. *J. Org. Chem.* **2013**, *ASAP*, DOI: 10.1021/jo401191s.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil