

Synthesis of Simple Alkyl-Seleno-Carbohydrates

Jaqueline P. Vargas (PG)*1, Diogo S. Lüdtke (PQ)1

1. Instituto de Química, UFRGS, Porto Alegre, RS, Brasil e-mail corresponding author. jaquevgs@gmail.com

Keywords: Carbohydrate, Selenium, Neoglycoconjugate

INTRODUCTION

Selenium exists as trace element in mammalian and their metabolism is still in current investigation. Incorporate the selenium atom in carbohydrates is one way to further this investigations¹. We planned since glycosides this alkyl antimicrobial activity² and organoselenium serves as therapeutic important compounds, including anticancer agents³. Here, we present our work focused in the synthesis of alkyl-seleno linked in non-glycosidally form.

RESULTS AND DISCUSSION

First of all, the starting materials were synthesized. The alkyl-disselenides 1, by Grignard reaction, using alkyl-bromides as reagents, and the tosylates 2 derivatives of D-xylose, D-ribose, D-galactose from respective protected sugars (figure 1).

Figure 1. Synthesis of starting materials.

Then, the alkyl-seleno-neoglycoconjugates 3 were obtained by reductive cleavage of alkyl-disselenides 1 using NaBH₄ as reductant followed by addiction of tosylates 2⁴ (figure 2).

Figure 2. Synthesis of alkyl-selenium-glycoconjugates.

The choose for the specific chain of octyl and decyl for the present alkyl-seleno-neoglycoconjugates was based on previous works⁵, which investigate the advantages of obtain *n*-octyl-β-*D*-glycosides to study biological activities. Futhermore, the improvement of this work is link the alkyl group in non-glycosidic

position through a selenium atom by usual organic synthesis.

Table 1. Alkyl-selenium-neoglycoconjugates scope.

#	Alkyl	Tosylate	Time	Yield
			(h)	(%)
1	Octyl	TsO O O O O O O O O O O O O O O O O O O	24	65
2	Decyl	2a	24	53
3	Octyl	TsO O OMe O D OMe	24	66
4	Decyl	2b	24	60
5	Octyl	O OTS O O 2c	72*	51
6	Decyl	2c	72*	50

^{*}Lower yields by 24h.

As we expected, the reaction carried out with octyl lead higher yields except for 2c, which is more hindered, the yields are modest and the reaction takes more time, 72 instead of 24 hours.

CONCLUSION

Here, we presented a useful and simple way to obtain a new class of molecules, the alkyl-selenoneoglycoconjugates. According to the previous works based on alkyl-glycosides, these molecules also showed potential biological activity and the antioxidant studies are in final adjustment course.

ACKNOWLEDGEMENTS

CAPES, CNPq, FAPERGS.

REFERENCES

- ¹ Boutureira, O.; Bernardes, G. J. L.; Fernandez-Gonzalez, M.; Anthony, D.
- C.; Davis, B. G. *Angew. Chem. Int. Ed.* **2012**, *51*, 1432.

 ² Matsumura, S., Imai, K., Yoshikawa, S., Kawada, K., Uchibori, T. *J. Am.* Oil Chem. Soc, 1990, 67, 996.
- May, S. W.; Pollock, S. H. Drugs 1998, 56, 959.
- ⁴ Affeldt, R. F.; Braga, H. C.; Baldassari, L. L.; Lüdtke, D. S. *Tetrahedron*, **2012**, *68*, 10470.
- ⁵ Rosevear, P.; VanAken,T; Baxter, J.; Ferguson-Miller, S. Biochemistry, 1980, 19, 4108.