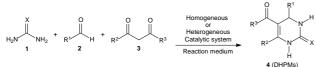


On the Biginelli Reaction under Homogeneous Catalysis

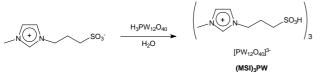
Haline G. O. Alvim,^a Tatiani B. de Lima,^b Heibbe C. B. Oliveira,^a Fabio C. Gozzo,^b Julio L. Macedo,^a Patricia V. Abdelnur,^c Wender A. Silva^a and Brenno A. D. Neto^a


a) Institute of Chemistry, IQ-UnB, University of Brasilia, 70904-970, P.O.Box 4478, Brasília, Brazil b) Institute of Chemistry, University of Campinas. c) Embrapa Agroenergia, Brasília, Brazil.

*e-mail corresponding author: haline.alvim@gmail.com

Keywords: Biginelli reaction, ionic liquids, mechanism

INTRODUCTION


Today, new and greener technologies are imperative needs regarding the chemical industries. Attempts to connect the advantages of catalysis in ionic liquids (ILs)¹ with multicomponent (MCRs) reactions are found.² The Biginelli MCR (Scheme 1) was therefore performed with an efficient new homogenous catalytic system towards DHPM synthesis in ILs with an imidazolium Bronsted IL bearing [PW₁₂O₄₀]³⁻.

Scheme 1. General catalyzed Biginelli reaction.

RESULTS AND DISCUSSION

Scheme 2 shows the catalyst synthesis, which was further supported in $BMI.NTf_2$ for the reaction.

Scheme 2. Synthesis of the homogeneous catalyst (MSI)₃PW.

Fifteen different DHPMs, including the bioactive Monastrol, were synthesized in good to excellent yields (60-99%). To investigate the mechanism, ESI-QTOF-MS analyses were performed (Figure 1).

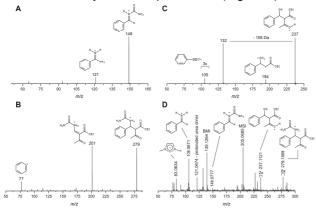
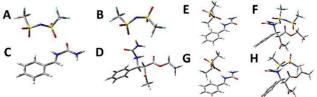



Figure 1. (A)–(C) ESI(+)-QTOF of the key intermediates.(D) ESI(+)-QTOF mass spectrum of the reaction.

The iminium mechanism was clearly the preferred reaction pathway as indicated by the detection of the iminium intermediate (**Int I**, Figure 1A) and the intermediate from the addition reaction to this ion (**Int II**, Figure 1B).

Finally, to gain insights into the mechanism and mainly into the IL effect, DFT calculations were also performed (Figure 2) considering the anion (NTF₂) effect over the charged cationic intermediates detected by ESI-MS analyses.

Figure 2. Optimized geometries at B3LYP/6-31+G(d,p) level of theory. (A) Anion (NTf₂) *cis.* (B) Anion (NTf₂) *trans.* (C) **Int I** (iminium). (D) **Int II** (addition to the iminium). (E) **Int I** associated with the anion NTf₂. Note the anion changed to its *trans* conformation upon approximation. (F) **Int II** associated with the anion NTf₂ (*cis*). (G) **Int I** associated with the anion NTf₂ (*trans*). (H) **Int II** associated with the anion NTf₂ (*trans*).

The anion (NTf_2) from the IL (reaction medium) stabilized the charged (cationic) key intermediates upon ion pairing (and larger supramolecular aggregates) formation.

CONCLUSION

The efficiency of the new homogeneous catalytic system (**(MSI)**₃**PW**/BMI.NTf₂) to perform the Biginelli MCR with enhanced IL effect was demonstrated.³ ESI-MS analyses and DFT calculations pointed the preferred mechanism pathway (iminium) and the origin of the IL effect through both ion pairing and larger supramolecular aggregates formation.

ACKNOWLEDGEMENTS

CAPES, CNPq, FAPDF, FAPESP and DPP-UnB.

REFERENCES

- ¹ Dupont, J.; Souza, R. F.; Suarez, P. A. Z. Chem. Rev. **2002**, *102*, 3667.
- de Graaff, C.; Ruijter, E.; Orru, R. V. A. *Chem. Soc. Rev.* **2012**, *41*, 3969. Alvim, H. G. O.; de Lima, T. B.; de Oliveira, H. C. B.; Gozzo, F. C.; de Macedo, J. L.; Abdelnur, P. V.; Silva, W. A.; Neto, B. A. D. *ACS Catal.*

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil

2013. 3. 1420.