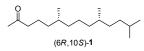


Synthesis of all possible stereoisomers of 6,10,13trimethyltetradecan-2-one, male-produced sex pheromone of *Pallantia macunaima*

Rafael A. Soldi and Paulo H.G. Zarbin*

Departament of Chemistry, Federal University of Paraná – 81531-990, Curitiba-PR, Brazil

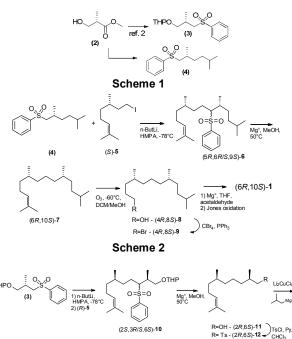

*pzarbin@ufpr.br.

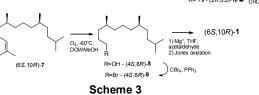
Sex pheromone; 6,10,13-trimethyltetradecan-2-one; chiral sulfone.

INTRODUCTION

Pallantiamacunaima(Heteroptera,Pentatomidae) is one important heteropteran pestfound in southern Bazil.Previously, we reportedthe structural elucidation, synthesis and absoluteconfiguration of sex pheromone for this species.The male-specific compound was identified as(6R, 10S)-6, 10-13-trimethyltetradecan-2-one

((6R, 10S)-1), the first ketone pheromone described in stink bugs.¹ Here in, we wish to describe an alternative methodology to prepare all isomers of 6,10,13-trimethyltetradecan-2-one.




RESULTS AND DISCUSSION

Initially the hydroxi-ester **2** was converted into different sulfones (Scheme 1).² The iodides (R)/(S)-**5**, were synthesized from commercial (*R*)-citronellol (98% e.e.) and (*S*)-citronellol (99% e.e).

The coupling between a buthyllithium-generated carbanion of sulfone **4** with iodide (*S*)-**5**, gave a new sulfone (5R,6R/S,9S)-**6** in 68% yield (Scheme 2).³ The reductive removal of the sulfonyl moiety of (5R,6R/S,9S)-**6**, was achieved smoothly by using magnesium turnings in methanol.⁴ Ozonolysis of (6R,10S)-**7** and reductive workup gave (4R,8S)-**8**. The Grignard reagent prepared from (4R,8S)-**9** was allowed to react with acetaldehyde, leading to the secondary alcohol, that was submitted to Jones oxidation affording the first isomer (6R,10S). The another stereoisomer (6S,10S)-**1** was synthesized following combination of sulfone **4** and iodide (*R*)-**5**.

In a slightly different procedure (Scheme 3), the coupling of sulfone **3** with iodide (*R*)-**5** proceeded smoothly to afford (2S,3R/S,6S)-**10**,³ with was further desulfonated to give the alcohol (2*R*,6*S*)-**11**.⁴ This compound was then converted into the corresponding tosylate and coupled with isobutylmagnesium bromide in the presence of Li₂CuCl₄ to afford the alkene (6*R*,10*R*)-**7**. With this compound in hands, we have employed the same reaction sequence described above to prepare the desired isomer (6*S*,10*R*)-**1**.

CONCLUSION

In conclusion, our synthetic approach using chiral iodides prepared from citronellol has allowed the synthesis of all possible isomers of 6,10,13trimethyltetradecan-2-one. Further experiments employing enantiopure, as well as racemic compounds, are underway in the laboratory and the field.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the CAPES, CNPq and INCT Semioquímicos na Agricultura.

REFERENCES

¹Favaro, C.F.; Soldi, R.A.; Ando, T.; Zarbin, P.H.G.Org. Lett. **2013**, 15,1822 ²Santagelo, E.M.; Zarbin, P.H.G.; Cass, Q.B.; Corrêa, A.G. Synth

 Santagelo, E.M., Zarbin, P.H.G., Cass, G.D., Contea, A.G. Synth Commun. 2001, 31, 3685
³Nakamura, Y.; Mori, K. Eur. Jour. Org. Chem. 2000, 15, 2745

⁴Taguri, T.; Yamakawa, R.; Ando, T. *Tetrahedron Asymm* 2012, 23, 852. 15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil