

Synthesis and anti-HSV-1 activity of novel β-carbolines containing a substituted thiazolidin-4-one ring at C-3

Valéria Aquilino Barbosa¹ (PG), Camila de Menezes Kisukuri¹ (IC), Renata Sespede Mazia² (PG), Tania Ueda-Nakamura² (PQ), Celso V. Nakamura² (PQ) and Maria Helena Sarragiotto^{1*} (PQ)

¹Universidade Estadual de Maringá – Departamento de Química – Av. Colombo, 5790, Zona 07, 87020-900 Maringá-PR – Brasil. ²Universidade Estadual de Maringá – Departamento de Análises Clínicas – Av. Colombo, 5790, Zona 07, 87020-900 Maringá – PR – Brasil

*mhsarragiotto@uem.br

Keywords: β-carboline-4-thiazolidinones, synthesis, anti-HSV-1 activity.

INTRODUCTION

Compounds containing heterocyclic nucleus have shown a range of pharmacological and biological properties. Our research group has demonstrated that appropriate heterocyclic groups attached to the 3-position of the β -carboline skeleton result in more active derivatives, with reduced toxicity^{1, 2}. In the present work, we performed the synthesis and antiviral activity evaluation of β -carboline derivatives containing a substituted 4-thiazolidinone nucleus at 3-position.

RESULTS AND DISCUSSION

The synthetic route for preparation of the β carboline derivatives **7a-c** is outlined in **Scheme 1**.

Reagents and conditions: (a) MeOH, H_2SO_4 (cat), reflux, 48 h, 92%; (b) R¹CHO, TFA, DCM, rt 80-91%; (c) S, xylene, reflux, 48 h to 0 °C, 3 h, 70-90%; (d) NH₂NH₂.H₂O, EtOH, reflux, 48 h, 72-91% e) PhCHO, DMF, MW 67-83%; f) HSCH₂COOH, *p*-TsOH (cat), toluene 68-71%.

Scheme 1. Synthetic route for β-carbolines 7a-c

The β -carbolines containing the 4thiazolidinone ring at 3-position (**7a-c**) were prepared from the commercial *L*-tryptophan (**1**). The Pictet Spengler condensation of the *L*tryptophan methyl ester (**2**) with appropriate aromatic aldehydes, in acidic media, afforded the tetrahydro- β -carbolines **3a-c**. Oxidation of **3a-c** with sulfur, in xylene, followed by treatment of the β -carbolines **4a-c** with hydrazine hydrate gave the respective carbohydrazides **5a-c**, as previously reported². The synthesis of the desired derivatives **7a-c** was possible by the reaction of imines **6a-c** with mercaptoacetic acid, using catalytic *p*-toluenesulphonic acid. The intermediates **6a-c** were prepared by the condensation of carbohydrazides **5a-c** with benzaldehyde, in DMF, under microwave irradiation.

The antiviral activity of the synthesized compounds was performed against *Herpes simplex* virus type 1 (HSV-1). Derivatives **7a-c** showed potent antiviral activity (EC₅₀ values in the range of 0.80 to 2.02 μ M), and high selectivity (SI>200) (**Table 1**).

Table 1. Antiviral activity of 7a-c against HSV-1

Comp	ЕС ₅₀ ^ь (μМ)	СС ₅₀ ^а (µМ)	SI ^c
7a	0,80±0,117	467±14,142	592,5
7b	2,15±0,424	506±6,429	235,0
7c	2,02±0,494	1080±37,859	533,9
0 Conservations at which FOO(or tate distributions have a			

^a Concentration at which 50% cytotoxicity is observed ^b Concentration at which 50% efficacy in antiviral assay is observed

^c Selectivity index (CC₅₀/EC₅₀)

CONCLUSION

In this work, we have synthesized β carboline derivatives containing a substituted 4thiazolidinone nucleus attached at position-3. The synthesized compounds showed potent antiviral activity and high selectivity against *Herpes simplex* virus type 1 (HSV-1).

ACKNOWLEDGEMENTS

CAPES, CNPq, Fundação Araucária, DQI-UEM

REFERENCES

¹ Formagio, A. S. N.; Tonin, L. T. D.; Foglio, M. A.; Madjarof, C.; de Carvalho, J. E.; da Costa, W. F.; Cardoso, F. P.[;] Sarragiotto, M. H.; Bioorg. Med. Chem., **2008**, 16, 9660.

² Savariz, F. C.; Formagio, A. S. N.; Barbosa, V. A.; Foglio, M. A.; de Carvalho, J. E.; Duarte, M. C. T.; Filho, B. P. D.; Sarragiotto, M. H. J. Braz. Chem. Soc., **2010**, 21, 288.