

Studies on the synthesis of biodiesel catalyzed by Nb₂O₅.nH₂O in transesterification reactions of cotton, coconut and flaxseed oils

Johann C. S. Sunderhus, Bruno H. Arpini, Valdemar Lacerda Jr.*, Sandro J. Greco, Álvaro C. Neto and Reginaldo B. dos Santos.

Laboratório de Síntese Orgânica e Medicinal – LSO&M, Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil. *e-mail: vljuniorqui@gmail.com Keywords: Niobic acid, Biodiesel, Transesterification.

INTRODUCTION

Transesterification is the predominant process for converting vegetable oils into biodiesel.¹

Nb₂O₅.nH₂O is known to have strong surface acidity and it reportedly² increases Lewis acid sites at temperatures higher than 500 °C, whereas Bronsted acid sites are more abundant at temperatures between 100 and 300 °C.

This study, which is a continuation of other investigations of this research group3, aims to implement a methodology for preparing methylic biodiesel through transesterification process of cotton, coconut and flaxseed oils, monitoring heat treatment of Nb₂O₅.nH₂O catalyst ratios and different proportions of catalyst mass/oil mass.

RESULTS AND DISCUSSION

The reactions were made with the addition of methanol (1.0 ml), cotton seed, coconut and linseed oils (0.5 g), DMSO (2.5 ml) as solvent to increase the boiling point of the mixture, and the catalyst in the proportions and treatment conditions shown in Table 1. For each vegetable oil, a reaction was made without the use of catalysts.

All reactions were made under heating conditions of 170 °C in a reflux system, and 0.5 mL of methanol was added every 8 hours. Reaction time was 48h. After the end of the reaction time, the products were extracted through multiple extractions.

Through the use of ¹H NMR spectroscopy, the products obtained were analyzed and quantified by the following expression:

Figure 1. Methylene hydrogen's of the triglyceride (Ao) and methoxy hydrogen's ester (Ab) of biodiesel.

This expression relates the area of integration of the signal referring to the methoxy hydrogen's ester (Ab) and the area of methylene hydrogen's of the glyceridic of trialyceride (Ao).

Table 1. Proportions of catalyst/oil, calcinations temperature and conversion rates.

Oils	Catalyst/oil (m/m) %	Calcination T°C	Conversion rates (%)
Cotton seed	20	115 °C	6.2
		300 °C	9.5
	100	115 °C	12
		300°C	17.4
	0		0
Coconut	20	115 °C	8.3
		300 °C	13.1
	100	115 °C	5.7
		300 °C	24.0
	0		0
Linseed	20	115 °C	5.7
		300 °C	18.4
	100	115° C	5.7
		300 °C	21.0
	0		0

We observed an increase in conversion rates with the increase of the mass ratio of Nb₂O₅.nH₂O. This behavior was already expected, because with the increased amount of catalyst, there is increased availability in the reaction.

CONCLUSION

We found that the use of Nb₂O₅.nH₂O as a catalyst promotes conversions in the transesterification of vegetable oils studied, but not in very satisfactory vields.

ACKNOWLEDGEMENTS

The authors thanks to CBMM, CAPES, CNPq, and LabPetro-DQUI/UFES.

REFERENCES

¹Soldi, R.; Oliveira, A.; Ramons, L. e César-Oliveira M. A. Appl Catal. A: Gen. **2009**, *361*, 42-48.

²Nowak, I.; Ziolek, M.; Chem. Rev. 1999, 3606-3624.

^aArpini, H. B.; Lacerda Jr., V.; dos Santos, D. A.; dos Santos, R. B.; Greco, S. J; Neto, Á. C.; 35^a *RASBQ*, **Resumos**, TEC 008, **2013**