

Synthesis of selenium linked steroidal glycoconjugates

Ricardo F. Affeldt^{*1}, Letiére C. Soares, Oscar E. D. Rodrigues² and Diogo S. Ludtke¹

1. Instituto de Química, UFRGS, Porto Alegre, RS. 2. Depto. de Química, UFSM, Santa Maria, RS. Brazil.

*r.affeldt@gmail.com

Keywords: selenoglycosides, glycoconjugation, cholesterol

INTRODUCTION

Steroidal glycosides derivatives are found in several natural products and shows cardiotonic and anticancer activity, such as diosgine and digitoxin.¹ On the other hand, selenoglycosides have been explored as potential anti-HIV, anticancer and antioxidants.² We have recently described the synthesis of selenium linked carbohydrate and amino acid glycoconjugates.³ In this work we synthesized cholesterol Se-glycoconjugates by selective ring opening of cholesterol epoxide.

RESULTS AND DISCUSSION

Initially were obtained glycosyl diselenides **2** from *D*-galactose, *D*-ribose and *D*-xylose in 3 steps in 82-90% yield, by reacting sugar-protected tosylates **1** with Li_2Se_2 (figure 1). The cholesterol epoxides **3** were obtained by a previously optimized methodology involving asymmetric epoxidation of a double bound.⁴

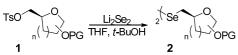
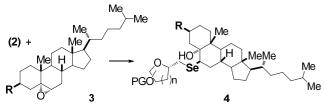
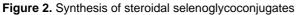




Figure 1. Synthesis of carbohydrate diselenides

We then explored the selenium linkage of the two structures with reductive cleavage of the diselenide derived from *D*-galactose to provide the nucleophilic cholesterol epoxide opening. After the *in situ* formation of the nucleophilic selenocarbohydrate specie by reaction with a suitable reductant agent in inert atmosphere it was added a solution of the cholesterol. The best yields were obtained after 48h in THF/EtOH or DMF (Table 1, entries 2 and 3). Changing the reducing agent furnished lower yields as well as addition of ZnCl₂ catalyst (entries 8-10).

Table 1.	Reaction	between	1·1 8 eo	v. of 2 and 3
	reaction	DCLWCCII	1.1.0.00	

#	R	Reducing agent	Solvent	Т (°С)	t (h)	Yield (%)
1	ОН	NaBH ₄	THF/EtOH	66	24	37
2	ОН	NaBH ₄	THF/EtOH	66	48	65
3	ОН	NaBH ₄	DMF	80	48	60*
4	ОН	NaBH ₄	DMF	120	48	53
5	ОН	NaBH ₄	EtOH	76	48	50
6	OMe	NaBH ₄	DMF	80	48	45
8	ОН	NaBH ₄	THF/EtOH	66	48	5%**
9	ОН	LiAIH ₄	THF/EtOH	80	48	5%
10	OH	LiEt ₃ BH	THF	66	48	50%

*1:1 diselenide:epoxide; **1 eqv. of ZnCl₂

We choose to explore the scope of the reaction with equimolar mixture of the diselenide and the epoxide in DMF at 80° for 48h with NaBH₄ changing the sugar from *D*-galactose to *D*-ribose diselenide, were similar yields were obtained (figure 3).

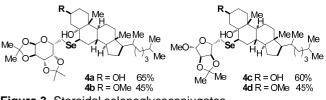


Figure 3. Steroidal selenoglycoconjugates.

CONCLUSION

It was successfully achieved steroidal selenoglycoconjugates in a convergent and stereoselective synthesis and modification of both sugar and cholesterol units are under investigation. The new compounds posses high molecular complexity and potential biological activity.

ACKNOWLEDGEMENTS

CNPq, FAPERGS and CAPES.

REFERENCES

¹ Jensen, M.; Schmidt, S.; Fedosova, N. U.; Mollenhauer, J.; Jensen, H. H. *Bioorg. Med. Chem.* **2011**, *19*, 2407.

² (a) Boutureira, O.; Bernardes, G. J. L.; Fernandez-Gonzalez, M.; Anthony, D. C.; Davis, B. G. Angew. Chem. Int. Ed. **2012**, *51*, 1432. (b) Vargas, L. M.; Soares, M. B.; Izaguirry, A. P.; Lüdtke, D. S.; Braga, H. C.; Savegnago, L.; Wollenhaupt, S.; Brum, D. S.; Leivas, F. G.; Santos, F. W. J. App. Toxicol. **2013**, *33*, 679.

³ Affeldt, R. F.; Braga, H. C.; Baldassari, L. L.; Lüdtke, D. S. *Tetrahedron*, **2012**, *68*, 10470.

⁴ Rodrigues, O. E. D.; Souza, D.; Soares, L. C.; Dornelles, L.; Burrow, R. A.; Appelt, H. R.; Alves, C. F.; Alves, D.; Braga, A. L. *Tetrahedron Lett.* **2010**, *51*, 2237.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil