

Calixarene Catalyze Cascade Povarov-Hydrogen-Transfer **Reaction in Synthesis of Quinolines**

Juliana B. Simões^{1,2}, Ângelo de Fátima³, Luiz Claudio A. Barbosa^{1,3}, Sergio A. Fernandes^{1,*}

¹ Departament of Chemistry, CCE, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil. ²Departament of Science Education, Instituito Federal Fluminense, Itaperuna, RJ, 28300-000, Brazil. ³Departament of Chemistry, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil. *santonio@ufv.br or sefernandes@gmail.com

Keywords: Povarov reaction, quinolines, p-sulfonic acid calix[4]arene

INTRODUCTION

Quinoline nucleus is a common heterocyclic ring found in natural and unnatural compounds endowed with biological properties.¹ Tetrahydroquinolines are easily obtained from Povarov reaction which correspond to the reaction of arylimines with electron-rich olefins. Further, the obtained tetrahydroquinolines may be further transformed into quinolines by oxidantion.² Indeed, Povarov reaction followed by an oxidative aromatization, in a cascade process, was reported using excess of arylimine as oxidant (Fig. 1).2

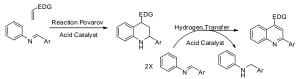


Figure 1 – Cascade process catalysis in the synthesis of quinoline.

The p-sulfonic acid calix[4]arene (CX4SO₃H) has been employed as catalysts in Povarov reaction for synthesis of julolidines.³ Here we employ CX4SO₃H as a catalyst for synthesis of substituted quinolines.

RESULTS AND DISCUSSION

In order to evaluate the effect of CX4SO₃H as a catalyst, we used the 4-bromoaniline 1a, benzaldehyde 2 and styrene 3, as substrates for Povarov reaction (Tab. 1).

Table 1. Optimization of Reaction Conditions^a

$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Solvents	Time (h)	Catalyst (mol %)		Yield (%) ^b			
		Catalyst (mor 70)	4a	4b			
CH₃CN	4	CX4SO ₃ H (25)	54	-			
THF	4	CX4SO ₃ H (25)	-	-			
CHCl ₃	4	CX4SO ₃ H (25)	-	8			
Without solvent	4	CX4SO ₃ H (25)	20	5			
CH ₃ CN	12	CX4SO ₃ H (1.0)	65	-			
CH ₃ CN	12	PHA (4.0)	12	-			
CH ₃ CN	12	CF ₃ COOH (4.0)	64	-			
CH ₃ CN	12	CH ₃ COOH(4.0)	-	-			
CH ₃ CN	12	Lactic acid (4.0)	39	Trace			
	12	Oxalic acid (2.0)	43	-			
CH₃CN	12	H ₂ SO ₄ (2.0)	-	-			

^a The reaction of **1a** (1 mmol), **2** (1.2 mmol) and **3** (1.5 mmol) was carried sob temperature 80 °C ^b Isolated Yield. ^c The concentration of H⁺ was kept constant.

The results for the optimization reactions conditions using CX4SO₃H as a catalyst and also the results employing other acids are show in Tab. 1.

Our results suggest that not only the imine is acting as an oxidant since some yields obtained in these reactions were higher than 50%. O₂ (air) or other receptor hydride, such as acetonitrile, may also act as a possible oxidants. The CF₃COOH presented similar performance as CX4SO₃H, however the use of CX4SO₃H is advantageous since it is a reusable Additional examples of CX4SO₃Hcatalyst.³ catalyzed Povarov-hydrogen-transfer reaction is presented in Table 2.

 Table 2. CX4SO₃H-catalyzed Povarov-hydrogen-transfer
reaction for different anilines^a

R NH ₂ 1ai 2			N 4a-i	B H 5ai
R	4	Yield ^ø 4 (%)	5	Yield ^{^b 5 (%)}
4-Br	4a	65	5 ^a	-
4-F	4f	60	5f	-
4-OCH ₃	4c	60	5c	-
4-SCH ₃	4d	64	5d	-
4-t-butyl	4e	62	5e	-
4-OH	4b	71	5b	-
4-NO2	4g	45	5g	29
4-CN	4h	40	5h	21
3,4,5-OCH ₃	4i	49	5i	

^aThe reaction of 1a (1 mmol), 2 (1.2 mmol) and 3 (1.5 mmol) was carried sob 80 °C ^bIsolated Yield.

In general, anilines bearing electron-donor groups furnished quinoline in higher yields.

CONCLUSION

We have uncovered a cascade Povarov-hydrogentransfer process that can be employed to produce substituted quinolones in good yields.

ACKNOWLEDGEMENTS

CNPq, FAPEMIG, FUNARBE and CAPES.

REFERENCES

Michael, J. P. Nat. Prod. Rep. 2007, 24, 223.

²Shindoh, N.; Tokuyama, H.; Takemoto, Y.; Takasu, K J. Org. Chem. 2008, 73, 7451.

Simões, J.B.; de Fátima, A;.Sabino, A.A.; de Aquino, F.J.T.; da Silva, D.L., Barbosa, LC.A. and Fernandes, S.A. Org. Biomol. Chem., 2013, 11, 5069.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil