

Synthesis of Substituted Pyrazolones from Morita-Baylis-Hillman Adducts

Lucas A. Zeoly, Rosimeire C. Barcelos, Manoel T. Rodrigues Jr., Lucimara J. Martins, Fernando Coelho*

State University of Campinas, Chemistry Institute, P.O.B 6154, 13084-971, Campinas, SP - Brazil

*coelho@iqm.unicamp.br

Keywords: Morita-Baylis-Hillman, Heterocycles, Pyrazolones

INTRODUCTION

The pyrazolone moiety has been gaining attention because of its biological importance. This structure is present in some useful analgesic, antipyretic and anti-inflammatory drugs, namely metamizole, phenazone, propyphenazone and ampyrone¹.

Therefore, we have focused our attention in the synthesis of this class of molecules using the classical 1,3-dicarbonyl compounds approach, which were obtained from Morita-Baylis-Hillman adducts.

RESULTS AND DISCUSSION

The synthesis of the 2,3-dihydro-1H-pyrazol-3-one derivatives was accomplished in four steps starting from the commercial aldehydes 1-4. The first step consists of a Morita-Baylis-Hillman reaction of the aldehydes with methyl acrylate catalyzed by DABCO, using the reaction conditions previously optimized by our group². The MBH adducts **5-8** were then oxidized using IBX³, and were directly reduced used a borane dimethylsulfide complex (Scheme 1). As seen in **Table 1**, the yields for the 2-steps, after chromatographic purification of the product, varied from 65-91%. After that, hydrazine hydrate is added to a solution of the β -keto esters **9-12** in methanol with a catalytic amount of acetic acid, and after an overnight period, the solvent is evaporated, ethyl acetate added, and the product is filtered off, giving only the 4-methyl-2,3-dihydro-1H-pyrazol-3-ones 13-16 in good yields (70-100%).

Scheme 1. Oxidation-reduction path to the pyrazolones.

Table 1. Pyrazolone synthesis from the MBH adducts.

Entry	MBH (%) ^a	β-keto ester (%) ^{a,b}	Pyrazolone (%) ^a		
1	5 $R^1 = C_6 H_5$ (74)	9 (80)	13 (70)		
2	6 $R^1 = 3 - CIC_6H_4$ (85)	10 (68)	14 (78)		
3	7 $R^1 = 4$ -MeOC ₆ H_4 (70)	11 (91)	15 (74)		
4	8 $R^1 = 4 - O_2 NC_6 H_4$ (96)	12 (65)	16 (100)		
^a Yields refer to isolated and purified products. ^b Two-step yield.					

The MBH **8**, **19** and **20** adducts were also used as substrates for an intermolecular Heck reaction⁴ catalyzed by a Najera oxime-derived palladacycle and 4-iodophenol as aryl halide (**Scheme 2**) giving the Heck adducts (HA) **21-23** in very good yields (85-96%, **Table 2**). Applying the same reaction conditions that were used for the β -keto esters, the 4-(4-hydroxybenzyl)-2,3-dihydro-1*H*-pyrazol-3-ones **24-26** were obtained in good yields (60-92%).

Table	2.	Pyrazolone	synthesis	from	the	Heck	adducts
(HA).							

Entry	MBH (%) ^a	HA (%) ^a	Pyrazolone (%) ^ª			
1	8 $R^1 = 4 - O_2 N C_6 H_4$ (96)	21 (96)	24 (74)			
2	19 $R^1 = propyl$ (85)	22 (85)	25 (92)			
3	20 R ¹ = 2-thienyl (85)	23 (90)	26 (60)			
^a Yields re	^a Yields refer to isolated and purified products.					

CONCLUSION

In summary, we have presented a useful approach towards the synthesis of β -keto esters from MBH adducts and by reacting those with hydrazine hydrate, generated substituted pyrazolones, in high yields.

ACKNOWLEDGEMENTS

The authors thank CNPQ, Capes and Fapesp for financial support.

REFERENCES

¹ Gunasekaran, P. et al. Eur. J. Med. Chem. 2011, 46, 4530.

- ² Coelho, F. et al. Tetrahedron, **2002**, 7437.
- ³ Santos, M. S.; Coelho, F. RSC Advances, 2012, 2, 3237.

⁴ Pirovani, R. V.; Ferreira, B. R. V.; Coelho, F. Synlett, **2009**, 2333.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil