

Efficient synthesis via molecular sieve of 3-(pyrimidin-2yl)thiazolidinones

Ribeiro, C.S.¹; Campos Jr, J.C.^{1*}; Bierhals, M.P.¹; Freitag, R.A.; Cunico, W.¹;Siqueira, G.M.¹

¹Laboratório de Química Aplicada a Bioativos – LAQUIABIO, CCQFA, UFPel

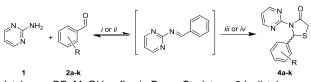
*coanjunior@gmail.com

Keywords: thiazolidinones, molecular sieves, pyrimidine derivatives

INTRODUCTION

Several methods for the synthesis of thiazolidin-4ones are described in the literature¹. The most often used involves three components: a primary amine, a carbonyl compound and mercaptoacetic acid using azeotropic distillation with Dean-Stark trap, for the water removal, is the most common approach. Besides, other protocols were developed by using dehydrating agents among these Na₂SO₄, molecular sieves, DCC and others, with the purpose to improve the yield of the products.²

The aim of this study was explore the application of molecular sieves in compare with Dean-Satrk trap, as dehydrating agents in the synthesis of 3-(pyrimidin-2-yl)-thiazolidinones.


RESULTS AND DISCUSSION

In attempting to work with a less toxic solvents, some reactions with molecular sieve were tested with: ethanol, isopropanol, and tetrahydrofuran, however, toluene showed the best results. Moreover, high temperature ($\sim 80^{\circ}$ C) an BF₃ addition increased the efficiency of the reactions with molecular sieve, similar that reported by Gouvêa et al. under azeotropic distillation.³

The proposed compounds, **4a-k**, were obtained in two steps as show in **Scheme 1**. The progress of reactions was monitored by GC and TLC, and the compounds were confirmed by GC-MS and melting point determination. The novel compounds **4c**, **4e**-**g** and **4i** were also characterized by ¹H and ¹³C NMR.

The synthesis using molecular sieve showed moderate yields when compared to use of azeotropic distillation **Table 1**.

Scheme 1.

I: toluene, BF₃:MeOH, reflux in Dean–Stark trap, 3 h; *ii*: toluene, BF₃:MeOH, molecular sieve, 80°C, 3 h; *iii*: HSCH₂COOH **3**, reflux in Dean–Stark trap, 16 h; *iv*: HSCH₂COOH **3**, molecular sieve, 80°C, 16 h.

Produc t	R	m.p.(⁰C) ^a	Mol. S. Yield (%) ^b	Conv. Yield (%) ^c
4a	4-CH ₃	147-150	35	53
4b	2-CI	172-175	54	77
4c	3-F	166-168	30	45
4d	4-F	143-146	49	73
4e	3-OMe	144-147	37	60
4f	2-NO ₂	174-177	56	98
4g	3-NO ₂	175-178	52	76
4h	2,4-Cl	178-180	46	73
4i	2,3-OMe	131-135	52	82
4j	3,4-OMe	102-105	38	63
4k	2-Cl, 6-F	132-135	33	51

Table 1. Yields of compounds 4a-k.

^a Melting point are uncorrected. ^bYields of pure compounds – Molecular sieve. ^cYields of pure compounds – Conventional.

CONCLUSION

We report the efficient synthesis of eleven compounds of 2-(aryl)-3-(pyrimidin-2-yl)-1,3thiazolidin-4-one using a molecular sieve that furnishes the desired products in a lower energy (~80°C). Moreover, the procedure showed advantages like operational simplicity, moderate vields and overall lower cost.

ACKNOWLEDGEMENTS

The authors thank to CAPES, CNPq, FAPERGS and UFPel.

REFERENCES

1. Jain, A. K.; Vaidya, A.; Ravichandran, V.; Kashaw, S. K.; Agrawal, R. K., *Bioorganic & Medicinal Chemistry* **2012**, *20* (11), 3378-3395.

2. Prasad, D.; Nath, M., J. Heterocycl. Chem. 2012, 49 (3), 628-633.

3. Gouvea, D. P.; Bareno, V. D. O.; Bosenbecker, J.; Drawanz, B. B.; Neuenfeldt, P. D.; Siqueira, G. M.; Cunico, W., *Ultrason Sonochem* **2012** *19* (6) 1127-1131

Ultrason. Sonochem. **2012**, *19* (6), 1127-1131. Campos, J. C.; Gouvêa, D. P.; Ribeiro, C. d. S. et al, J *Biochem. Mol. Tox.* **2013**, *27* (9), 445-450.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil