

Asymmetric enzymatic reduction and Suzuki-Miyaura coupling for the synthesis of odanacatib

Raquel de Oliveira Lopes, Benedikt Reichart, Toma Glasnov, C. Oliver Kappe, Wolfgang Kroutil, Leandro Soter de M. e Miranda, Ivana Correa R. Leal, Rodrigo O. M. A. de Souza*

Grupo de Biocatálise e Síntese Orgânica, Instituto de Química, Programa de Pós-graduação em Química, Universidade Federal do Rio de Janeiro – UFRJ, Ilha do Fundão, Rio de Janeiro-RJ. *raquellopes25@gmail.com

Keywords: Odanacatib, Biocatalysis, Sukuzi-Miyaura coupling

INTRODUCTION

The odanacatib (1) (Figure 1) is a specific inhibitor of cathepsin K acting as an antiresorptive agent that preserves bone-formation for the osteoporosis treatment.^{1,2} The clinical trial (phase III) of odanacatib (1) accomplished early due to the potencial efficacy, safety and favorable benefit-risk profile.³

By considering the important role of odanacatib (1) for the osteoporosis treatment, the aim of this work is to develop new biocatalysts synthetic routes for building blocks of 1 by using microwave and continuous flow as strategy tools for reaction process optimization.

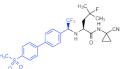
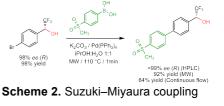


Figure 1. Odanacatib (1)


RESULTS AND DISCUSSION

Initially, the lyophilized E. coli cells containing the overexpressed alcohol dehydrogenase (ADH-A') were rehydrated with sodium phosphate buffer (850 μ L, 50 mM, pH 7.5) assembling the cofactor NADH (1 mM). Then, the 4'-Br-2,2,2-trifluoroacetophenone (50 mM) dissolved in isopropanol (150 μ L) was added. The reaction mixture was shaken at 30 °C and 700 rpm in different times. Afterwards, the reaction was stopped by extraction with ethyl acetate (3 x 2 mL). The organic layer was separated by centrifugation (10 min, 5.000 rpm) and dried (Na₂SO₄). Conversions and enantiomeric excess of the corresponding alcohol were determined by GC (Scheme 1).⁴ The GC-FID analysis showed that conversions over than 99% and enantiomeric excesses of 98% are achieved by adopting the following parameters: 10 mg of lyophilized cells for 6 hours or 20 mg of lyophilized cells for 2 hours.

Scheme 1. Asymmetric reduction of the ketone by using lyophilized cells of *Escherichia coli* (ADH-A')

After that, the Suzuki-Miyaura coupling was optimized under microwave irradiation (Monowave 300 – Anton Paar) using the alcohol R (1 eq.), boronic acid (1 eq.), potassium carbonate (2 eq.), tetrakis palladium(0) (0.2 mol%) and a solution of distilled water and isopropanol 1:1, in different times and temperatures. Then, the solvent was evaporated and the mixture was extracted with ethyl acetate. The organic laver was dried (Na₂SO₄) and conversions were determined by GC-FID (Scheme 2).⁵ The same reaction was performed by continuous flow (Syrris). The reaction mixture was pumped through the coil reactor (4 mL PFA-Coil; 5 minutes residence time; flow rate 0.8 mL/min) and heated at 110 °C. The complete reaction mixture was collected for 10 minutes. The isolated yield achieved 92% by using the microwave conditions and 84% by using continuous flow, and in both reactions the enantioselectivity desired was preserved.

CONCLUSION

Lyophilized *E. coli* cells containing the overexpressed ADH are able to reduce 4'-Br-2,2,2-trifluoroacetophenone to R alcohol, in excellent conversions rates and high enantiomeric excess, and the Suzuki-Miyaura coupling preserved the enantioselectivity in good conversion rates by using microwave or continuous flow conditions.

ACKNOWLEDGEMENTS

The authors thank CAPES, CNPq, and FAPERJ.

REFERENCES

- ¹ Gauthier, J. Y. et al. Bioorg. Med. Chem. Lett. 2008, 18, 923-928.
- O'SHEA, P. D. et al. J. Org. Chem. 2009, 74, 1605-1610.
- ³ Has Merck Found The Heir To Fosamax?". *Forbes*. 2012-07-11. Retrieved 2013-08-18.
- ⁴ Bisogno, F. R. *et al. Chem. Eur. J.* **2010**, *16*, 11012-11019. ⁵ Borchert, S. *et al. J. Mol. Catal. B: Enzym.* **2012**, *84*, 89–93.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil