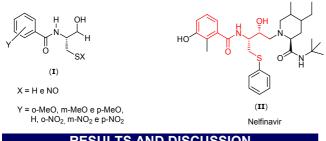


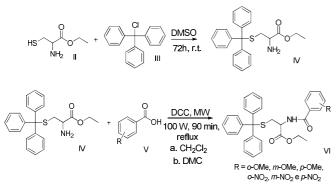
Microwave irradiation and DMC: a potent combination for the synthesis of 2-arylamino-3-tritylsulfanyl-propionic ethyl ester


Stephanie Amarillis E. Santo, Luiz S. Longo Jr., Adriana Karla C. Amorim Reis*

Instituto de Ciências Ambientais, Químicas e Farmacêuticas – Universidade Federal de São Paulo Rua Prof. Artur Riedel, 275, Diadema, SP, Brazil, CEP 09972-270 *e-mail corresponding author. adriana.amorim@unifesp.br Keywords: HIV-Protease, Microwave, Coupling Reactions

INTRODUCTION

HIV-1 protease (HIV-1-PR) has a critical role in the life cycle of HIV-1.¹ In order to reduce the overall viral replication, an attractive alternative is to improve the pharmacological properties, pharmacokinetic and safety profiles of the potential therapeutic anti-proteases drugs (PAs), such as Nelfinavir (II) (antiretroviral drug).^{2,3}


This work reports our preliminary results obtained in the synthesis of N-(1-hydroxy-3-mercaptopropan-2-ylarylamides (I) *via* the coupling reaction of N-(1-hydroxy-3mercaptopropan-2-yl)aryl-amides with benzoic acid derivatives using classical as well green solvents.

RESULTS AND DISCUSSION

The 2-arylamino-3-tritylsulfanyl-propionic ethyl esters (**VI**) were prepared following the reaction pathway showed in Scheme 1.

Scheme 1

Protection of *L*-cysteine ethanoate (II) with trityl chloride (III) in DMSO led to IV in 74 % yield after 4 days.⁴

Several benzoic esters derivatives (VI) were obtained from the coupling reaction between IV and benzoic derivatives acids using DCC as coupling reagent and CH_2CI_2 or dimethylcarbonate (DMC) as solvents, under microwave irradiation.⁵ The results obtained for these reactions are summarized in Table 1.

Table 1. Results of the coupling reactions for N-(1-hydroxy-3-mercaptopropan-2-yl)aryl-amidesIVwithbenzoic acid derivativesVusing DCC and MW irradiation.

Entry	(R)	Solvent(% yeald)	
		CH_2CI_2	DMC
1	Н	63	66
2	o-OMe	70	51
3	<i>m</i> -OMe	79	30
4	<i>p</i> -OMe	77	50
5	o-NO ₂	62	55
6	<i>m</i> -NO ₂	20	47
7	<i>p</i> −NO ₂	49	66

All compounds were obtained in 20-78% yields in CH_2CI_2 and 30-66% in DMC, being characterized by NMR and LC-MS techniques.

CONCLUSION

We demonstrated that the compounds **VI** can be efficiently prepared by DCC-mediated coupling reaction of amines and acids in green solvent DMC, using MW irradiation. From our results, it is possible to conclude that DMC is a potential substitute for dichloromethane in amide-forming reactions using common amide coupling reagent, DCC.

ACKNOWLEDGEMENTS

We are grateful to CNPq, Fapesp and Capes.

REFERENCES

- ¹ Fitzgerald, P. M. et al; J. Biol. Chem. **1990**, 265, 14209.
- ² Pardrige, W. M. Ad. Drug Deli. Re. **1995**, 15, 5
- ³ Halmos, T.; Santarromana, M.; Antonakis, K.; Scherman, D.; *Eur. J. Pharmacol.*, **1996**, 318, 477
- ⁴Nowshuddin S., Reddy A. R.; *Tetrahedron: Assimmetry*, **2011**, 22, 22-25.
- ⁵ Rudolph J. et al; *J. Med. Chem.* **2001**, 44, 619-626

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil