

Propriedades vibracionais e ópticas da cisteína em solução aquosa com variação de pH: Uma comparação entre resultados teóricos e experimentais

Jarielly Vieira* (Graduanda em Ciência e Tecnologia na Universidade Federal Rural do Semi-Árido – UFERSA)

Ana Alice Câmara (Graduanda em Ciência e Tecnologia na Universidade Federal Rural do Semi-Árido – UFERSA)

Eveline Matias Bezerra; (pos-doc do Programa de Pós-Graduação de biofísica e Farmacologia da Universidade Federal do Rio Grande do Norte - UFRN

Roner Ferreira da Costa; (Professor do Departamento de Ciências Exatas e Naturais da Universidade Federal Rural do Semi-Árido – UFERSA)

Francisco Adilson Sales; (Professor do Instituto Federal de Educação, Ciência e Tecnologia do Ceará-IFCE)

Valder Nogueira Freire; (Professor do Departamento de Física da Universidade Federal do Ceará – UFC)

*Email: jariellyfdj@hotmail.com

resumo:

A cisteína (abreviada como C ou CYS) é uma alfa aminoácido com fórmula química NH2CH(CH2SH)COOH (2R-2-amino-3sulfanyl-ácidopropanóico) que possui três grupos ionizáveis: carboxílico, amino e tiol. Devido a formação de ligação dissulfeto entre seus grupos tióis, a cisteína tem sua estabilidade molecular e resistência aumentada à proteólise, tendo uma função fundamental na manutenção da estrutura terciária das proteínas. Desde então, a cisteína é considerada o aminoácido mais importante, o conhecimento de suas propriedades químicas e físicas é necessário para um entendimento da sua participação nos processos bioquímicos. Este artigo tem o objetivo de apresentar uma comparação entre o estudo teórico e experimental vibracional e propriedades ópticas do aminoácido cisteína com a variação de pH. Nós estudamos quatro estruturas protonadas da cisteína: H3B (pH=0,0), H2B (pH = 5,2 e pH 6,0), HB (pH=9,6) e B (pH=14,0). As quatro cisteínas em solução do pH 0 ao 14 foram analisadas por espectroscopia modo ATR. Cálculos teóricos foram determinados pela Teoria do Funcional da Densidade (DFT) com funcional híbrido b3lyp pela aplicação da base 6-311+G(d) em solução aquosa usando o modelo contínuo de solvatação (PCM, Polarizable Continuum Model). Primeiro, nós realizamos a otimização da geometria para obter as estruturas protonadas de menor energia, e obtemos o espectro Infravermelho e Raman. Por fim, foram feitos os assinalamentos dos modos normais de vibração de cada uma das estruturas.

palavras-chave:

cisteína; pH; DFT; Infravermelho; Raman.

1. Introdução

A cisteína (abreviada como CYS ou C) é um alfa-aminoácido com a fórmula química HO2CCH(NH2)CH2SH (2R-2- amino-3sulfanyl-propanoic acid) que possui três grupos ionizáveis: carboxila, amina e tiol. Devido a formação de ligações dissulfeto entre os seus grupos tiol, as cisteínas aumentam a estabilidade molecular e a resistência a proteólise, tendo papel fundamental na manutenção da estrutura terciária das proteínas. Uma vez que a cisteína é considerada um dos mais importantes aminoácidos, o conhecimento de suas propriedades químicas e físicas é necessário para a compreensão da sua participação nos processos bioquímicos. A oxidação da cisteína quando exposta ao ar, nos dá a forma da cisteína que consiste em duas moléculas de cisteínas ligadas por uma ligação dissulfeto, que é encontrada em muitas proteínas, mas somente em pequenas quantidade. A deficiência de cisteína pode estar envolvida em muitas síndromes, tais como: despigmentação dos cabelos, edema, lesões de pele, danos do fígado e perda de massa muscular (DOBROWOLSKI, RODE, SADLEJ ,2007; TIWARI,MISHRA, 2009). Este trabalho tem como objetivo apresentar uma comparação entre o estudo teórico e experimental das propriedades vibracionais e ópticas do aminoácido cisteína com a variação do pH.

2. Metodologia

Foram estudadas quatro estruturas protonadas da cisteína: H3B (pH=0,0), H2B (pH=5,0 e pH=6,0) zwiterionica, HB (pH=9,6) e B (pH=14,0) (ver Fig. 1). As quatro cisteinas em solução de pH 0 a 14 foram analisadas por espectroscopia no modo ATR. As medidas de absorção foram todas feitas com o espectrômetro VERTEX 70 FT-IR Bruker. Os principais mínimos locais destas moléculas foram teoricamente obtidos a partir do estudo de "scan" relaxado na superfície de energia potencial "Relaxed Potential Energy Surface Scan", RPESS). Para isto, foram realizados cálculos *ab initio* através da Teoria do Funcional da Densidade (DFT, *Density Functional Theory*) com o funcional híbrido M06-2X aplicando-se o conjunto de base 6- 311+G(d,p) no vácuo e em meio aquoso utilizando-se o modelo contínuo de solvatação (PCM, Polarizable Continuum Model). Estes mínimos obtidos foram subsequentemente reotimizados e tiveram suas frequências vibracionais calculadas no mesmo nível. Para todosos cálculos foi usado o programa *NWChem*.

3. Resultados e Discussões

Quatro cisteínas em solução aquosa foram preparadas em diferentes valores de pH (0, 5, 9,6 e 14,0). A figura 1 mostra os possíveis estados de protonação da cisteína em solução aquosa e os respectivos valores de pH. O estiramento do carbono-enxofre na cisteína ocorre usualmente em 682 cm⁻¹ (WOLPERT, HELLWING, 2006), mas em nossos experimentos a banda foi fraca e a dependência do pH não foi vista. No espectro Infravermelho do aminoácido cisteína, algumas mudanças na característica do espectro podem ser observadas com a variação do pH do aminoácido em solução aquosa (experimental), nos cálculos teóricos no vácuo e em meio aquoso utilizando-se o modelo contínuo de solvatação (PCM, Polarizable Continuum Model) (ver Fig. 4). Foram obtidas as estruturas protonas de menor energia obtidas a partir de cálculos *ab initio* no vácuo (Fig. 2) e PCM (Fig. 3). A diferença significativa entre os espectros IR no vácuo e modelo PCM para a H2B, é devido a existência da forma zwiteriônica apenas no modelo PCM. A tabela 1 mostra os valores dos comprimentos de ligação, ângulos de ligação e diedro dos confórmeros da cisteína. A geometria e frequências vibracionais da cisteína na forma neutra e protonada foram bem determinadas usando os métodos teóricos acima descritos.

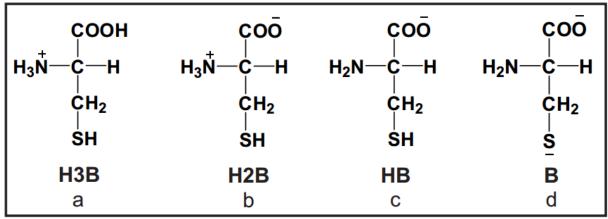


Figura 1: Estados de protonação da cistéina em diferentes valores de pH (a) pH=0.5; (b) pH= 5.2; (c) pH=9.6; (d) pH= 14.0

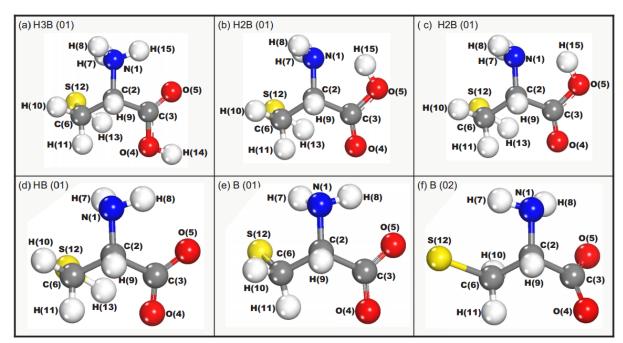


Figura 2: Estruturas protonadas de menor energia da cisteína no vácuo após otimização da geometria.

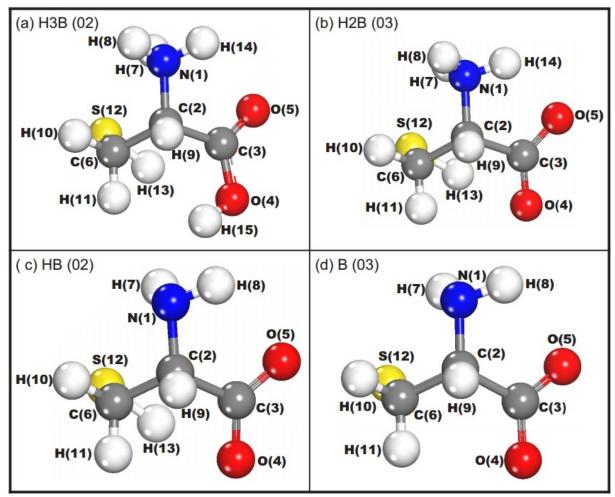


Figura 3: Estruturas de menor energia da cisteína em solvente contínuo (PCM) após otimização da geometria.

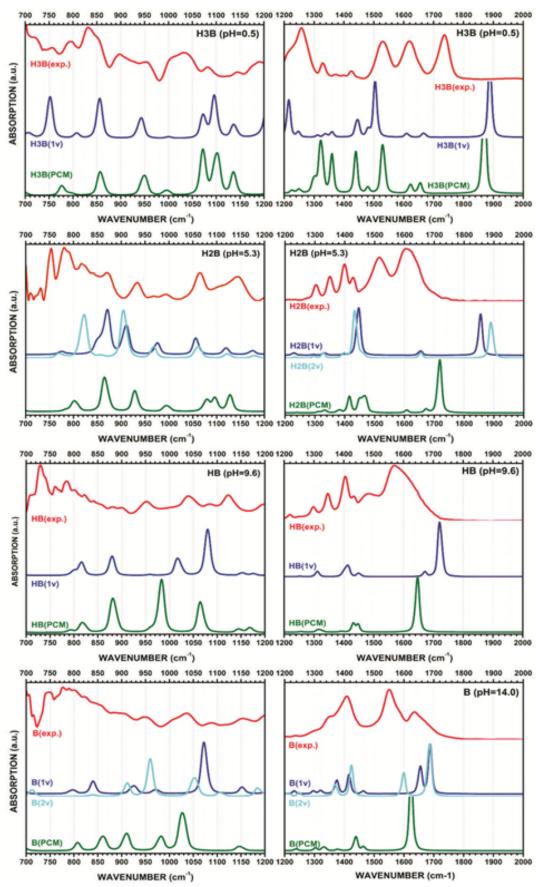


Gráfico 1: Espectros infravermelho experimental (vermelho), teórico vácuo (azul) e teórico PCM (verde) dos confôrmeros da cisteína coma variação do PH.

Tabela 1: Comprimento de ligação (Å), ângulo de ligação e diedro (graus) dos confórmeros da cisteína. *Estruturas otimizadas e esquema de numeração são mostradas nas figuras 1 e 2.

Parameters	Conformer (Calculated ^a)									
	H3B(1v)	НЗВ(РСМ)	H2B(1v)	H2B(2v)	H2B(PCM)	HB(1v)	HB(PCM)	B(1v)	B(2v)	B(PCM)
Bond lengths										
C2-C3	1.53005	1.52856	1.54715	1.53881	1.56192	1.57220	1.55797	1.57205	1.56240	1.55331
C2-N1	1.50007	1.49035	1.46658	1.45918	1.49416	1.46693	1.46201	1.46839	1.46932	1.46344
C2-C6	1.53016	1.53240	1.53523	1.52854	1.51846	1.52088	1.32349	1.54972	1.54475	1.53187
C2-H9	1.09371	1.09215	1.09715	1.09655	1.09195	1.09962	1.09815	1.10289	1.09446	1.09935
C3-O4	1.31850	1.19085	1.33637	1.32879	1.24961	1.24506	1.25030	1.25225	1.25339	1.25563
C3-O5	1.19736	1.32546	1.20376	1.19847	1.23849	1.25101	1.25378	1.25638	1.25712	1.25435
C6-H10	1.09146	1.08965	1.09143	1.09073	1.09039	1.09238	1.09083	1.09765	1.09357	1.09390
C6-H11	1.08850	1.08845	1.08850	1.08835	1.08683	1.08736	1.08651	1.09159	1.09703	1.08944
C6-S12	1.82148	1.82065	1.84121	1.82552	1.82636	1.83555	1.83343	1.84800	1.85100	1.84377
N1-H7	1.02216	1.03024	1.01826	1.01213	1.01990	1.01909	1.01854	1.02264	1.02021	1.01967
N1-H8	1.03092	1.02353	1.01301	1.01786	1.02701	1.01939	1.01648	1.01648	1.01869	1.01627
N1-H14	1.03751	1.02353	-	-	1.03365	-	-	-	-	-
S2-H13	1.34490	1.34379	1.34917	1.34358	1.34403	1.34656	1.34272	-	-	-
O4-H15	0.97117	0.96673	0.98342	0.97661	-	-	-	-	-	-
Bond angles										
O4-C3-O5	126.889	121.63069	123.25536	123.16862	129.77873	129.38193	127.04750	127.39022	127.26782	126.16201
O4-C3-C2	121.72402	121.65336	122.88590	122.46768	115.47192	115.68794	116.91773	115.63547	116.46155	116.03620
O5-C3-C2	111.38442	116.65305	113.83409	114.34761	114.74070	114.90784	116.01574	116.73302	116.23812	117.74861
C3-C2-N1	104.87639	106.49357	109.49030	109.41822	106.86589	113.85328	114.85642	113.26564	110.21886	114.69413
C3-C2-C6	114.01497	112.69138	111.05751	110.07324	113.71068	112.49249	111.40261	114.78111	108.78202	111.79045
N1-C2-C6	110.69215	110.18088	116.06686	115.94540	111.55791	111.07788	110.44361	112.39296	112.89643	110.26078
C2-C6-S12	112.60171	113.35512	114.08784	112.80102	112.71440	113.39364	113.21303	117.95986	115.73236	114.58434
C6-S12-H13	96.46645	97.05889	96.4403	95.56680	95.46863	93.23448	95.25814	-	-	-
C3-O5-H15	110.21341	113.8027	105.40878	106.34408	-	-	-	-	-	-
Dihedral angles										
C3-C2-C6-S12	-66.41344	-61.22306	-71.78604	-66.45496	-61.23007	-59.77972	-59.62174	-88.17882	-178.57475	-67.41394
N1-C2-C3-O4	12.64451	-1.66541	-164.87054	-161.26252	-163.48385	-154.34712	14.85055	178.10814	-30.85725	179.47913
C2-C6-S12-H13	73.93237	72.68317	72.91278	73.99425	64.17083	62.01376	67.17044	-	-	-

VIBRATIONAL AND OPTICS PROPERTIES OF CYSTEINE AQUEOUS SOLUTIONS WITH pH VARIATION A COMPARATION BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS

Abstract: Cysteine (abbreviated as C or CYS) is an alpha-amino acid with the chemical formula NH2CH(CH2SH)COOH (2R-2-amino-3sulfanyl-propanoic acid) that has three ionizable groups: carboxyl, amine and thiol. Because the formation of disulde bonds between their thiol groups, cysteines increases the molecular stability and resistance to proteolysis, plays a fundamental role in maintaining the tertiary structure of proteins. Since cysteine is considered one of the most important amino acids, the knowledge of their chemical and physical properties is necessary for an understanding of their participation in biochemical processes. This paper aims to present a comparison between the theoretical study of the experimental vibrational and optical properties of the amino acid cysteine with the variation of pH. We studied four structures protonated cysteine: H3B (pH = 0.0), H2B (pH = 5.2 and pH = 6.0), HB (pH = 9.6) and B (pH = 14.0). The four cysteines in solution of pH 0 to 14 were analyzed by ATR spectroscopy mode. Theoretical calculations were determined by Density Functional Theory (DFT) with B3LYP hybrid functional by applying the basis set 6-311 + G (d) in aqueous solution using the continuum solvation model (PCM, Polarizable Continuum Model). First, we applied the optimization of the geometry to obtain the protonated structures of lower energy, and then we obtained the infrared and Raman spectra. Finally, the alerts were made of normal modes of vibration for each of the structures.

Keywords: cysteine; pH; DFT; Infrared; Raman.

Referências bibliográficas

- [1] DOBROWOLSKI, J. Cz.; RODE, J.E.; SADLEJ, J. Cysteine conformations revisited, **Journal of Molecular Structure:THEOCHEM**, V.810, N°129, Ano 2007.
- [2] TIWARI, S.; P.C. Mishra; Vibrational spectra of cysteine zwitterion and mechanism of its formation: Blulk and specific solvent effects and geometry optimization in aqueous media, **Spectrochimica Acta Part A**, V.73, N°719, Ano 2009.
- [3] JEREMIAH J. Wilke, MARIA C. Lind, Henry F. SCHAEFEER III, ATTILA G. Császár, WESLEY D. Allen. Conformers of gaseous cysteine. **J. Chem. Theory Comput.**, V.5, N°1511, Ano 2009.
- [4] GRONERT, S.; O´HAIR, R.A.J. Ab Initio Studies of Amino Acid Conformations. 1. The Conformers of Alanine, Serine, and Cysteine, **J. Am. Chem. Soc.**, V.117, N° 2071, Ano 1995.
- [5] WOLPERT, M.; HELLWING, P. Spectrochimica Acta A, V.64, N°987, Ano 2006.