
Generative Systems:

Intertwining Physical, Digital and Biological Processes, a case study

Gonçalo Castro Henriques1, Ernesto Bueno2, Daniel Lenz3,
Victor Sardenberg4
1,3Federal University Rio Janeiro, LAMO, PROURB - Brazil 2Mackenzie Univer-
sity / Positivo University 4Leibniz Universitaet Hannover, Germany
1,3{gch|daniel.lenz}@fau.ufrj.br 2,4{ernestobueno|vsardenberg}@gmail.com

The fourth Industrial Revolution is characterised by the computational fusion of
physical, digital and biological systems. Increasing information in terms of size,
speed and scope exponentially. This fusion requires improved, if not new, tools
and methods to deal with complexity and information processing. By opening
Generative Systems to interact with the context, we believe that they can develop
solutions that are more adequate for our time. This research began with a
literature review about generative systems and their application to solve
problems. We then selected the tools, Cellular Automata, L-Systems, Genetic
Algorithms and Shape Grammar, and thought about how to translate these
original mathematical tools to specific design situations. We tested the
application of these tools and methods in a workshop, implementing recursive
loops to open these techniques to interference. Analysing the empirical results
made us revise our design thinking, relying on the study of complexity to
understand how these techniques can be more context-aware, so we can make
design evolve. Finally, we present a comparative framework analyses that
interlaces techniques and methods, so in the future we can merge physical, digital
and biological information.

Keywords: generative systems, design thinking, complexity, context interaction,
recursion

RESEARCH APPROACH
To promote Generative Systems in architectural de-
sign, we developed a 5-stage process. First, we re-
searched about generative systems and how to ap-
ply them. Secondly, we thought about the transla-
tion of abstract mathematical techniques to design
context. Thirdly, we tested these techniques empiri-

cally to gain a better understanding of their capabil-
ities and limitations in a workshop. Fourth, we anal-
ysed the tools and methods used and the results for
each technique. Results recommended deepening
our knowledge about design cognition and complex
systems theory. Finally, we synthesised and com-
pared the techniques and design methods.

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 25

GENERATIVE SYSTEMS AND COMPLEXITY
The use of generative systems in design, unlike tradi-
tional methodology, implies an indirect relation with
thefinal product. Production, rather thanbeingdone
directly with the “designer’s own hands,” is mediated
by a “generative system” (Fisher and Herr, 2000). To
define a generative system, it is necessary to define
the abstract set of rules andproceedings thatwill cre-
ate a set of objects. If wewant this object tomake any
sense in a certain environment, these rules must be
about the object-environment relation. Otherwise,
the meaning of the object in a specific context will
be a matter of chance.

Generative systems, exploring computational
power, can provide unimaginable solutions, expand-
ing creativity. According to Gero (1996), the most
common concept of creativity does not consider the
ability to develop possibilities during the genera-
tion of solutions; only the ability to improve end-
product quality. To create multiple solutions, it is
necessary to work with methods that explore and
record the possibilities of solving a problem, aggre-
gating unexpected and less familiar results usually
discarded. Taylor (1972) categorises five types of
creativity: expressive, productive, inventive, inno-
vative and emerging. In this context, it is impor-
tant to emphasise beyond the “emergent creativity”,
the “productive creativity”, that is, the creativity con-
textualised in the domain of a technique, which al-
lows controlling the project in the environment gen-
erated. Architects rely on Design Thinking (Simon,
1969) tohelp solve ill-definedproblems, usingmainly
implicit design processes instead of linear thinking
and with strict criteria. They value the hands-on ex-
perience with the tools and their application to find
solutions, evaluate and develop them, seldom mak-
ing any explicit algorithms. We often leave optimi-
sation till the final stages, after defining the form,
to improve its performance. However, mathematical
optimisation and processes, such as generative sys-
tems, have a precise definition and strict procedures
to solve problems. So, to understand generative sys-
tems, architects must enter the algorithmic process.

This requires opening the algorithm“blackbox”,mak-
ing the mechanisms to produce results explicit, un-
like the traditional “hands-on processes”, where the
final results are felt more directly. In a sense, archi-
tects need to cope with extensive processes to ex-
pand their abilities.

Composition and Complex Systems
By their education, architects are able to deal with
complex problems related with the nature of their
work. Beyond “Complexity and Contradiction” (Ven-
turi, 1966), the study of complexity in science has
developed to consider complex systems, supported
by the evolution of mathematics and computation, a
conceptual and technological evolution, intensified
now with the fourth industrial revolution disruptive
logic (Schwab, 2017).

Complexity is not new in the Design Thinking
process. Formerly, architecture was an art in the inte-
grative sense, but, after the Renaissance, it separated
into different branches of knowledge in a continu-
ous specialisation process. In architecture, the segre-
gation was not only among disciplines, but between
composition and materialisation. Like the architect,
the sculptor, the painter, the musician, the chemist
and the physicist, all compose (Figure 1). What is the
relationship between composition and complexity?

The relationship is closer than one might think.
The architect, like other composers, invents the prob-
lem - there is no scientific law to describe the con-
text of how an object emerges (Buchanan, 2000 and
Stolterman, 2008). Thenhe formulates circumstantial
laws to adapt a methodology that deals with prob-
lems beyond linear logic, dealing with implicit sub-
jective techniques, where he intervenes directly. The
artist, like the observer in second-order cybernetics,
interferes and changes his environment (Dubberly,
Pangaro, 2015). When we speak of composition, we
use notions such as rhythm, weight, dynamics and
static equilibrium, entailing a transition fromapart to
a whole relationship and vice versa. Therefore, in ad-
dition to quantities, the artistic process uses qualities
that have implicit measure subjected to an individ-

26 | eCAADe 37 / SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1

Figure 1
Composition in
different activities:
composition as
material search in
sculpture (Chillida),
expressive search in
painting (Tapiés
1990), search in
mathematics (Fuller
1948), and research
in the study of the
three-dimensional
composition of the
double helix
(Watson and Crick
1954). Photos in the
public domain.

ual learning process. Colquhoun (1989) refers about
composition:

“Composition came to mean a creative proce-
dure in which the artist created ‘out of nothing’ and
arranged his material according to laws generated
within the work itself ... Form was no longer thought
of as a means of expressing a certain idea, but as
indissoluble from, and coextensive with, the idea.
Composition therefore was able to stand for an aes-
thetic of immanence in which art became an inde-
pendent kind of knowledge of the world.”

This article does not intend to argue about the
dichotomy between art and science, but rather refer
to a time when these two areas of knowledge were
bound, forming a wholeness. This return to an in-
tegrated conception of different branches of knowl-
edgewas anecessity in the50s, a reaction to scientific
reductionism, as formulated in the “General Systems
Theory”. Thus, Integrating knowledge and tools in ar-
chitecture, promised so much by the introduction of
the digital in Architecture, is still to be fulfilled.

Observing the introductionof digital intodesign,
the separation of materialisation and composition
or the tool and process dichotomy, seems to per-
sist (Terzidis, 2003). To bridge tooling and the pro-
cessual use of digital, computerisation and computa-
tion, Terzidis proposed Algorithmic Design. The ar-
chitect’s process seems somehow incomplete when
he intends tomove into the unknown realm ofmath-
ematical tools, new “black boxes” he wants to open
to incorporate technology andmore information. For
this, architects rely on exploratory search, a knowl-
edge thathas similaritieswith composition searchus-
ing analogue or pre-digital generative systems. In
this aspect, architects have the ability to invent new
realities in other domains (Carpo, 2011). It is precisely

because the architect can invent the new that he can
contribute to refounding “the science of the artificial”
(Simon, 1969). Simon refers to design as indispens-
able: “The proper study of mankind is the science of
design, not only as the professional component of a
technical education, but as a core discipline for every
liberally educated man.”

So, it is not a question of how to apply design
to solve complex problems (Herr, 2002). Rather, it
is a question of how Design Thinking can (re)invent
approaches to Complex Systems. For this, we might
remember the characteristics and nature of design
problems (Buchanan, 2000). Also, how does artis-
tic composition deal with these new tools? To com-
pose is to establish an order among the parts - even if
we do it according to top-down processes (architec-
ture treatises) or bottom-up (rules of composition) -
representing an understanding of how things come
to be, that is, describing thing also as a process, or
method, of design, unifying a set of elements based
on the senses and previous experiences. Parallel to
art, when science passed from deterministic logic to
multi-causal and probabilistic reasoning, it required
new tools. In both cases, one can say experimen-
tation is a heuristic process to narrow the computa-
tional search space.

Complexity addresses relations among the parts
and multiple levels of organisation as well as the re-
lations (and behaviour) of these systems and their
environment. Due to its comprehensiveness, Design
Thinking canbeuseful in different areas: a) Visual and
symbolic communication; b) Material objects such
as products, tools, instruments and machines; c) Or-
ganisation of activities and services; d) Complex sys-
temsor environments for living,working, playingand
learning. (Buchannan, 2000). Applying a synthetic

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 27

approach to design thinking, in concatenating parts,
the whole context is essential for complex systems.

MelanieMitchell (2009) points out that to under-
stand complex systems, it is necessary to address in-
formation, computation, dynamics and chaos, and
evolution. In her book, she introduces these sub-
jects in each one of the chapters to set a conceptual
framework to define and measure complexity. She
measures complexity as: Size, Algorithmic Informa-
tion Content, Logical Depth, Thermodynamic Depth,
Computational Capacity, Statistical Complexity, Frac-
tal Dimension and Degree of Hierarchy. Finally, she
concludes, “The diversity ofmeasures that have been
proposed indicates that the notions of complexity
that we’re trying to get at have many different inter-
acting dimensions andprobably can’t be capturedby
a single measurement scale.”

Complex Systems and Problem Types
According to Weaver (1948), science began by solv-
ing simple linear problemswith few variables, during
the XVII, XVIII and XIX centuries. Then it solved prob-
lems of disorganised complexity, with many vari-
ables, using statistics. Thus, it solved problems from
the atoms to the stars resorting to computation us-
ing probability and statistical data. The next kinds of
problems to grasp are those of organised complex-
ity, of the mesoscale of everyday life, with more vari-
ables.

TRANSLATING GENERATIVE TECHNIQUES
We researched generative systems literature describ-
ing the applicationof these techniques to solveprob-
lems, identifying four significant techniques:

Cellular Automata (Neumann, 1951; Wolfram
2002), L-Systems (Lindenmayer, 1968), Genetic Algo-
rithms (Holland, 1975) and Shape Grammar (Stiny,
1980). Each tutor studied one of these techniques
along with a group of students, looking for exam-
ples and understanding of the type of problems each
technique can solve.

We studied the technique’s application in prac-
tical cases, resorting to the algorithms and descrip-

tions available. For 3 months, a group of researchers
identified types of problems, variables and applica-
tions, considering the potential and limitations of
each technique. This helped to formulate the work-
shop design problem. References differed in each
technique, but we focused on how to implement
them in visual programming, testing available appli-
cations. Relying on this experience, we prepared a
problem and tested it in the Workshop Form Finding
and Generative Systems, LAMO, Rio de Janeiro 2017.

A Problem in Design Context
Preliminary research identified simple solutions to
design problems on the mesoscale. We set the
space limits between 3×3×3mand 10×10×10m, and
thought about how to interact with the (few) vari-
ables during multiple generation through feedback.
We outlined an interaction between the algorithm
and the environment to open the “black box”. Pre-
liminary research identified similar situations among
techniques, variables andcontexts. We looked for ap-
plications of these techniques to public spaces, shel-
ters, pavilions and constructive systems. By setting a
boundary in the methods concerning the tools and
the computational processes, we identified a search
space and factors that interfered with this search,
from mere generic to applied search.

We set up the workshop for undergraduate and
postgraduate students, practitioners and professors,
of different origins, in eight groups of three. They
all learned to apply the different techniques, led by
each tutor, and then we carefully selected 2 groups
per technique. The participants’ diversity of back-
grounds and knowledge gave us the certainty to use
visual programming with Grasshopper. This allowed
implementation of generative algorithms without
the drawbacks of learning a textual language, while
its open policy enabled access to a great number of
software add-ons for experimentation (Bueno, 2016).

CELLULAR AUTOMATA. Cellular Automata (CA) is a
system that operates locally, as the state of the neigh-
bours’ cells, in each interaction, defines the state of
each cell. John von Neumann and Stanislaw Ulam

28 | eCAADe 37 / SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1

Figure 2
Cellular Automata
(CA) proposals,
Estranging The
Context,
architectural
elements that
inhabit the movies
films, group:
Thatilane Loureiro,
David Mendonça,
Eugênio Moreira
(Left), and The
Virtual Cocoon a
three-dimensional
CA that produces a
four-dimensional
object to be
explored in Virtual
Reality, group:
Nicolle Prado,
Isadora Tebaldi,
Emilio Marostega
(right)

developed CA in the 40s, and, since then, have been
applied in a wide range of fields, such as Computer
Graphics or Cryptography. Despite CA’s ability to cre-
ate form, it has few applications in architecture. Ac-
cording to intuition, a system with simple inputs us-
ing simple rules would produce simple behaviour.
CA defies this conception, as it can produce across
the range from simplicity to emergent complexity, as
demonstrated by Wolfram (2002). CA can produce
emergent and complex results.

In the workshop, CA’s high degree of unpre-
dictability required introduction of the idea of Form-
Making, instead of Form-Finding. This is an alterna-
tive to contemporary rational trends that argue that

simple quantitative criteria - such as environmen-
tal performance, material use, and cost reduction
- should determine the architectural form. (Carpo,
2012). We invited the CA participants to analyse the
spatial and aesthetic qualities of each configuration,
in each recursion, and how they interacted with the
system. There is no feasible way to foresee exactly
how to change a rule to affect the product. There-
fore, designers interact in a ludicwaywith the system
differing from Albertian total control of the drawing.
Participants approach the form-making algorithm in
a playful horizontal way, supported by previous re-
search about CA and computational morphogenesis
to handle complex phenomena (Sardenberg, 2013).

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 29

CAResults: The approachdiverged from simulat-
ingphysical reality to focusondesignas cultural prac-
tice. The first team used CA form-making to produce
architectural elements to inhabit cinematographic
contexts. Each project was conceived according to
a specific genre (i.e. science fiction, comedy and hor-
ror), as an installation that responds to the film and
changes it simultaneously. The second team, “Vir-
tual Cocoon”, used three-dimensional CA to produce
a four-dimensional object that interacts with Virtual
Reality. Usually we use a series of cubes side-by-side
to represent 3D-CA. However, VR enables the user
to interact with virtual objects according to his/her
movement, in an immersive cocoon.

L-SYSTEMS. LS research focuses on literature, but es-
pecially on its technical implementation. LS are sym-
bolic systems capable of generating growth struc-
tures, based on the ability to rewrite rules recur-
sively. The biologist, Aristid Lindenmayer (1925-89)
invented LS to describe the growth of simple species,
such as bacteria and algae. Three concepts are em-
bodied in this technique: (i) the initial axiom or seed,
which represents the initial state of the system; (ii)
the production rules applied to transform the seed,
through (iii) recursion, a repetitive computational
method that, in each generation, recalls the previous
one.

Originally, LS are formal deterministic systems,
as the rules are context-independent. Being deter-
ministic, there is one, and only one, substitution rule
for each letter of the alphabet. In order to extend
this technique, we searched for methods in visual
programming to develop context-sensitive LS, allow-
ing them to evolve from generating a single artificial
plant to different species over time. The reference
for LS design is the book by Prusinkiewicz and Lin-
denmayer (1990), and the articles by Fisher & Herr
(2000) and Agkathidis (2015). As practical experi-
ments, we sought diverse research, but especially the
practical experiments by Coates (2001). While work-
ingwith Grasshopper, we evaluated different LS add-
ons like Rabbit (Dimitrova, 2016), which has an in-
terpreter that translates the code into turtle graph-

ics. We found that this interpreter accepts only letter
symbols as input and is deterministic. Therefore, we
looked for recursive loop applications that enabled
non-deterministic or stochastic LS. Hoopsnake, cited
by Sedrez (2013), was not very intuitive and had lim-
itations. We also tested Loop (Turiello, 2013), and, fi-
nally, Anemone (Zwierzycki, 2015). The latter is the
most intuitive; and during loops maintains the data
structure and has an expandable list of data paths,
enabling parameter value change in each genera-
tion. Anemone enabled response to external factors
in each generation, implemented with turtle move-
ment.

LS Results: The first proposal developed in the
workshop was “Menger Revisited”, and the second,
“Hugging Trees”. The possibilities explored are com-
plementary. The first revisits the Menger sponge,
proposing interactive, recursive transformations: the
fractal changes according to the user, in a virtual
space. It went beyond the classical Menger sponge
by breaking the symmetry in unpredictable, yet rela-
tional, ways, without losing self-similarity. The sec-
ond proposal develops tree-like structures that re-
configure themselves according to human position,
changing the branch angles and planes of rotation
accordingly. The percentage of randomness that af-
fects tree movement is associated with external fac-
tors. When the user reaches the centre, the trees em-
brace him/her. The first solution has potential for VR
and can output data for augmented reality. The sec-
ond, despite following tree stereotypes, possesses a
feasible mechanism for a physical articulated struc-
ture.

GENETIC ALGORITHMS. A finite set of rules and
operations defines GA that simulates the combina-
tion of individual characteristics of the same species,
to select those with the best environmental fitness.
The algorithm’s structure considers the main mecha-
nisms present in the evolution of species as genetic
inheritance, random variation (crossover and muta-
tion) and natural selection.

We relate GA with the broad use of engineering
to optimise structures and components. The use of

30 | eCAADe 37 / SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1

Figure 3
Menger Revisited,
showing recursive
system variations
triggered by user
proximity. Group:
Fernando Lima,
Aurélio Wijnands,
Maria Eloisa.
Hugging Trees,
showing the fractal
movement of trees
as the user
approaches. Group:
Núbia Gremion,
Erick
Bromerschenckel,
Daniel Wyllie.

GA in design is frequent in spatial planning optimisa-
tion and form generation. Although it is an optimi-
sation method, we can use it as a generator mecha-
nism to assist the designer in exploring the solution
spaces, to obtain creative, emergent and unexpected
results. In this context, the algorithm is set to obtain
favourable solutions independently of the optimi-
sation level attained, guaranteeing a flexible choice
among the solutions generated. Themain references
areHolland (1995) Bentley (1999) andMitchell (1999).
Grasshopper has a genetic solver, Galapagos. How-
ever, the number of design problems it can tackle is
limited (Rutten, 2013). We used the add-on, Biomor-
pher (Harding, Olsen, 2018) that allows the designer
to interact with the algorithm during its execution.
The designer selects the “parent individuals” from
quantitative (optimal) and qualitative (aesthetic) cri-
teria, directing the evolutionary process, as the “indi-
vidual parents” will be crossed to generate “individ-
ual offspring”.

GA results: The projects developed were “Evolu-
tionary Aggregation” (EA) and “Dwell Debris” (DD).

They adopted as criteria: shade, contact with the
ground and formal arrangement. As a strategy for
structuring theGA, EAdistributed the components in
a regular 3D grid, ensuring modularity and orthogo-
nality. The DD authors opted to anchor components
in a random cloud of points, creating an irregular ar-
rangement. In both situations, the teams subtracted
the original grids with additional voids, but using dif-
ferent components. EA defined a single component
with freedom of rotation on the central axis. DD de-
fined four components that rotate on their axis, all
generating a diversity of solutions. EA programmed
the GA to find solutions that had the largest con-
tact among components and the largest projected
shadow. TheDD teamsearched for thegreatest num-
ber of intersections amongcomponents, thegreatest
volume on the ground and the least shade. The par-
ticipants used the add-on, Biomorpher to cause evo-
lution of formal solutions with human intervention.

SHAPE GRAMMARS. SG uses encoded abstract for-
malisms that limit its use to specialists. These for-
malisms also limit free interaction in the form of de-

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 31

Figure 4
Group DD strategy
and solutions.
Group: Anael Alves,
Loan Tammela,
Felipe Lannes.
Group EA strategy
and solutions.
Group: Luciana
Gronda, Igor
Machado, Monique
Cunha, Wellida
Coelho.

velopment. SGs have different natures as descriptive
and generative grammars (Garcia, 2016). To bridge
this gap, we developed a more intuitive interface in
visual programming, relying on earlier Stiny texts to
structure the definition. We identified a recurrent de-
scription that we organised into the triple ordinate:

G = (v, r, d)(1) (1)

where G is grammar, v vocabulary, r rules set, and d
derivation. The algorithm concatenates three sets,
maintaining each variable’s internal independence
and the set’s co-ordination. The loop uses v as input,
applying the r rule indicated in d, accumulating the
result in v. While v and d are simple lists, r is more
complex. The initial axiom has two shapes, setting
the initial and final form, memorising the Euclidean
transformations, and then applying them as input
shape. As holdbacks, the definition operation can-
not recognise the shapes used. The next step would
be recognising emergent forms. The algorithm’s sim-
plicity encouraged participants to develop their own
definitions.

SG Results: The first team used SG that relates a
façade composition with music notation, while the
other designed a shelter. They adapted the initial al-
gorithm, exploring the generation of diverse designs.
If we know the result of a rule application, it is easier
to predict the emerging phenomena. Thus, in the SG

definition, we knew the initial and final form, which
facilitated the interaction. The derivation played a
fundamental role in SG. However, SG teaching fo-
cuses on shapes and rules, how to change the deriva-
tion that needs to incorporate uncertainty that re-
mains obscure. Full randomness probably leads to
meaningless design, and some randomness can still
generate meaningful results. This requires encoding
the derivation data, organisation (data tree) and the
random derivation paths.

RECURSIVE LOOPS
Beings evolve interacting with the environment in
a continuous process in time. For generative sys-
tems to evolve, in addition to interaction and selec-
tionmechanisms, we need recursion. The creation of
such repetitive cycles was limited to thosemastering
formal computation. By introducing recursion in dif-
ferent design situations, using visual programming,
we pointed out how systemic interaction can gener-
ate evolution.

TECHNIQUES AND INTERACTION
The interaction between CA rules and the context
happens after the form generation, when the user
can interact in virtual reality with the CA. In LS, we
open the system boundaries to accept interference

32 | eCAADe 37 / SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1

Table 1
Generative
Techniques in
Design (CA,
LS,GA,SG): Purpose,
Scope, Challenges,
Outcomes and
Interference.
Interference is
based on the results
of the empirical
tests of the
workshop,
envisioning future
possibilities.

between the user and the context, in every gener-
ation, using scholastic algorithms. In GA, we over-
came the limitation of a blind system of blind optimi-
sation by allowing the user to interfere in each gen-
eration, introducing qualitative criteria that change
evolution. In SG, we broke the closed system, allow-
ing the user to affect, not only initial and final form,
but also interfere with the derivation rules.

Visual programming contributions

• A cellular automaton including a library of
context-specific objects;

• 4D-CA with VR visualisation;
• Responsive stochastic L-systems;
• Multi-objective evolutionary optimisations

(geometricmax shade optimisation), possibil-
ity of qualitative decisions during iterations;

• Automation shape grammars (Grasshopper);
• A 3D graphical music grammar.

However scarce, the workshop results reveal the gap
between tools and processes. Singh Gu (2012) com-
pared generative tools to integrate them in a “Com-
putational Design Framework”, a valuable contribu-
tion to research. However, besides the literature sur-
vey, is necessary to test them in context. We used
empirical knowledge to fuel design thinking about
both tools and design processes. Abovewe present a
synthesis, explaining howwe interfere with the tools
rules, envisioning future possibilities.

GENERATIVE TECHNIQUES ANDDESIGN
RESULTS DISCUSSION
The techniques described in this article have existed
since the 80s, but their implementation is slow. Pre-
vious formal approaches failed to translate the tools
into design methods. We proposed a framework
grounded onDesign Thinking and complexity, to im-
plement contextual interference with recursive cy-
cles. Finding an alternative to formal computation,

Design - GENERATIVE SYSTEMS - Volume 1 - eCAADe 37 / SIGraDi 23 | 33

using loops in visual programming, we show how
to interact with tools using recursion. Anemone
provedadequate for recursiveprocesses, inbothdata
replacement and incremental growth, allowing de-
signers to interfere between the cycles. Biomorpher
demonstrated the value of human interaction with
an evolutionary process, working as input of qualita-
tive criteria. We found recursion and selectionmech-
anisms have potential to develop systems that may
evolve in the desired direction using Visual Program-
ming. However, this requires technical improvement
of the loopprocesses and further development of the
solution selection mechanisms.

With the increase in Information. the problem
space augments. With the introductionof interaction
in time, with a selection mechanism, and enabling
the system to learn in the future,weexpect to enlarge
the solution space. This would follow the Von Neu-
mann self-replicating machines that can extend AI.
Finally, the generative tools are several algorithmic
methods,with their specificities. Wemust tame these
algorithms and go beyond the dichotomy between
techniques and methods (tools and processes). Only
then can these algorithms be absorbed, both by the
design thinking and by the maker culture.

Facing the fourth Industrial Revolution, this fu-
sion of techniques reinterprets old methods: by in-
troducing direct interaction and an increasing num-
ber of context-related variables, generative systems
can deliver responsive designs. Generative methods
can offer a symbiotic partnership between the de-
signer and the system to expand architectural abili-
ties skills. In the light of the fourth revolution, they
can intertwine information, whether digital, physical
or, in the future, biological.

Form Finding andGenerative Systems
LAMO Seminar/Workshop Form Finding and Gen-
erative systems, Rio de Janeiro Federal University,
28 Aug to 7 Set 2017, Coordination Gonçalo Castro
Henriques, Andres Passaro and Elisa Vianna. Tutors
generative tools: Victor Sardenberg, Ernesto Bueno,
Gonçalo Castro Henriques, Jarryer de Martino and

Daniel Lenz. Our gratitude to PROURB for support-
ing the event and to all participants and collabora-
tors, we cannot name here due to space limitations.

REFERENCES
Agkathidis, A 2015 ’Generative design methods imple-

menting computational techniques in undergradu-
ate architectural education’, eCAADe 2015, pp. 47-55

Buchanan, R 2006, ’Wicked Problems inDesign Thinking’,
Design Issues, 8, pp. 5-21

Carpo, M 2011, The Alphabet and the Algorithm, Cam-
bridge, Massachusetts, MIT Press

Fischer, T and Herr, CM 2001 ’Teaching Generative De-
sign’, Conference on Generative Art, Milan, pp. 1–11

Garcia, s 2017, ’Classifications of Shape Grammars’, in
Gero, J (eds) 2017, DCC, Springer, pp. 229-248

Gero, JS 1996, ’Creativity, emergence and evolution in
design’, Knowledge-Based Systems, 9, p. 435 448

Harding, J and Brandt-Olsen, C 2018, ’Biomorpher: Inter-
active evolution for parametric design’, International
Journal Architectural Computing, 16(2), pp. 144-163

Holland, JH 1995, Hidden Order: How Adaptation Builds
Complexity, Basic Books

Martino, JA 2015, Algoritmos evolutivos como método
para desenvolvimento de projetos de arquitetura,
Ph.D. Thesis, Universidade Estadual de Campinas

Mitchell, M 2009, Complexity: A Guided Tour, Oxford Uni-
versity Press

Rutten, D 2013, ’On the Logic and Limitations of Generic
Solvers’, Architectural Design, 83, pp. 132-135

Sardenberg, V 2013, Processos Emergentes em Territórios
Informais, Master’s Thesis, Mackenzie University

Schwab, K 2017, The Fourth Industrial Revolution, Pen-
guin Random House.

Sedrez, M and Martino, J 2018, ’Sistemas generativos’,
in Celani, G (eds) 2018, Arquitetura contemporânea
e automação: Prática e reflexão, Probooks, pp. 25-28

Simon, H 1969, The sciences of the artificial, MIT Press
Singh, V and Gu, N 2012, ’Towards an integrated gen-

erative design framework’, Design Studies, 33, pp.
185–207

Stiny, G 1980, ’Introduction to shape and shape gram-
mars’, Environment and Planning B, 7, pp. 343-351

Terzidis, K 2006, Algorithmic Architecture, Routledge
Venturi, R 1996, Complexity andContradiction inArchitec-

ture, The Museum of Modern Art, New York
Weaver, W 1948, ’Science and complexity.’, American sci-

entist, 35, pp. 1-12
Wolfram, S 2002, A New Kind of Science., Wolfram Media

34 | eCAADe 37 / SIGraDi 23 - Design - GENERATIVE SYSTEMS - Volume 1

