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This paper explores through professional case studies how design solutions
produced by expert teams compares to those developed through systematic
parametric analysis. While the expert intuition of either single designer or teams
helps to rapidly identify relevant aspects of the design problem and produce
viable solutions, it has limitation to address multi-criteria design problems with
conflicting objectives and searching for design alternatives. On the other hand,
parametric analysis techniques in combination with data analysis methods helps
to construct and analyze large design spaces of potential design solutions. For
the purpose of this study, the specifications of geometric features and material
properties of the building envelopes proposed by the expert design teams define
the base line to measure the extent of the performance improvements of two
typically conflicting objectives: Daylight quality and energy consumption. The
results show consistently significant performance improvement after systematic
optimization.
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INTRODUCTION
This study compares the performance of the intu-
itive design decisions of expert designers relative to
the results of systematic design exploration and op-
timization processes. Literature describes design ex-
pertise as the set of knowledge and skills acquired
through professional practice that play an essential
role in intuitive rapid design responses (Cross, 2004;
Lawson & Dorst, 2009; Schön, 1983). Until recently,
the complexity and vastness of design spaces, and

the time required to produce and quantitatively ana-
lyze design solutions, meant that intuition based on
design expertise was necessary to drive a fast-paced
professional design process. However, when making
decisions that impact building performance, to what
extent can designers rely on intuition based on ex-
perience to make those decisions? How can we ver-
ify such as effectiveness? Emergent computational
tools and frameworks (Bernal, Haymaker, & Eastman,
2015; Haymaker et al., 2018) offer means to deeper
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explore the above questions since they allow analyz-
ing large number of design alternatives in short pe-
riod of time. For the purpose of this study, we ana-
lyzed sample case studies leaded by expert profes-
sional design teams. We modelled and quantified
the differences in performance between professional
design teams intuitive design process, and the out-
comes of a systematic optimization process. The in-
tent is to illuminate the role, and motivate more re-
search in leveraging design space exploration tools
in performance-based architectural design practice.

Literature on design cognition identifies at least
six degrees of expertise: novice, beginner, compe-
tent, expert, master, and visionary. However, de-
signers begin to show the ability to produce intuitive
responses from the expert level (Dreyfus, 1997). In
practice, this expertise is usually distributed among
design teammembers. While somedesigners are just
competent in some areas, they can be expert in oth-
ers. These experts can recognize the problem, se-
lect the relevant aspects to focus on, reference new
problems to recognizable problems and previous
solutions (Dorst, 2007), generate possible alterna-
tives (Lawson, 2004), co-evolve a problem and solu-
tion (Maher & Poon, 1996), and integrate knowledge
across fields (Kruger & Cross, 2006). Expert designers
manifest these processes intuitively to immediately
build an interpretation of the problem without ex-
tensive evaluation or further analyses. They seems to
know in advance the decisions and constraints that
capture fundamental trade-offs of the problem and
help them frame feasible solutions (Dabbeeru&Muk-
erjee, 2008). This intuitive behavior plays an impor-
tant role in decision-making since often times, im-
plicit and not even verbalized heuristics determine
the design parti, assumptions, expected results, and
the risks while exploring novel solutions and making
design moves.

In recent years, parametric and generative de-
sign in combination with computational perfor-
mance analysis have gave rise to techniques of Para-
metric Analysis (PA) (Roudsari, Pak, & Smith, 2013).
The parametric topological architecture embedded

in the schema enables geometric variations of the
configuration (Oxman, 2017), while performance
analysis tools evaluate every new design alterna-
tive. PA produces large data sets to supports a data
drivendecision-makingprocess that, unlike intuition,
is based on quantitative evidence and statistical lev-
els of confidence. This paper explores professional
case studies, the design developments of a high
school and a research facility, to compare how de-
sign solutions producedby the intuitionof expert de-
sign team with those developed through systematic
PA. The aim of this study is questioning the accuracy
of the design intuition to deal with conflicting objec-
tives and quantifying the contribution of PA.

METHODOLOGY
The methodology assesses the effectiveness of the
intuitive assumptions achieve acceptable balance of
two typical conflicting objectives: Maximizing day-
light illuminance and minimizing Energy Use Inten-
sity (EUI) synthetized in a value function that assigns
equal weights to both of them in the overall score.
While EUI is expressed in kWh/m2 per year, daylight
in the percentage of the occupied area within 300
and 3000 lux based on one of the LEED v4 options
that averages four point in time, 9 am and 3 pm in
September and March 21st. The intuitive assump-
tions assign input values to parameters that control
geometric features such as window-to-wall rations
and shading devices, specification for constructions
related to energy performance and attributes rele-
vant for daylight analysis. Theprocess to evaluate the
contribution of the systematic optimization process
based on PA has the following steps:

Base line
Thebase line, or startingpoint to comparewith, is the
performance result for Illuminance and EUI of the de-
sign team intuitive assumptions. These assumptions
are not random. On the contrary, they are based on
professional experience and code recommendations.
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Design Space
In collaboration with the design team, we generate
a design space of alternatives by widening up down
the assumptions of the original designs. For each pa-
rameter, we assign three to five possible values and
calculate the full factorial of all possible combina-
tions.

Sampling the Design Space
Since the combinations of multiple values for inputs
parameters generate large design spaces ranging
from thousands to billions, we use aDesign of Experi-
ment (DoE) technique for sampling and reducing the
size of the alternatives to evaluate (Chlela, Husaun-
ndee, Inard, & Riederer, 2009). This technique selects
significantly different combinations of input values
that represent the diversity of the design space with
acceptable levels of confidence.

Parametric Analysis
A parametric model of every case study takes in a
sequence of the combinations of inputs parameters
produced by the DoE. Every simultaneous regenera-
tion of the geometric model and update of the con-
structions and other attributes triggers the dynamic
simulations of daylight illuminance and EUI. The Intu-
itive base line and the parametric analysis share the
same parametric analytical model that includes the
geometry and attributes required by the simulation
engines, Radiance for Daylight, and Energy Plus for
EUI. The implementation of the PA relies on a para-
metric modeling software that automates the geo-
metric variations, and plugins that exchange infor-
mation with the engines every time the parametric
model updates the geometry.

Data analysis
Finally, we compare the results of the base line
and scores achieved by the PA for design space ex-
ploration. This comparison entails qualitative and
quantitative aspects. While the qualitative registers
changes in the design strategy based on feedback
from the PA, the quantitative compares the perfor-
mance value of the intuitive assumptions with the

min, max, and average of the DoE sample. The com-
bination of these two different performance indica-
tors in a single value function requires normalizing
the results of the analyses of the DoE sample from
zero, the minimum, to one, the maximum for both
indicators. In addition, the EUI indicator needs inver-
sion since the lower the number the better the per-
formance. The value function represents the average
of both normalized indicators also ranging from zero
to one. The closer to one the higher the value and
better overall performance according to the weights
represented in the value function. Once the value
function allow us to identify the best combination
of indicators, we quantify the percentage of perfor-
mance improvement by indicator (Clevenger & Hay-
maker, 2011).

Sensitivity Analysis
The Sensitivity Analysis (SA) correlates inputs and
outputs of the PA, sorts in order of importance the in-
puts that affect the overall result (Hamby, 1994), and
contributes to build interpretations and define prior-
ities since identifies these parameters with major im-
pact on the overall result.

CASE STUDIES
The case studies correspond to theworkof expert de-
sign teams formed by a Project Designer (PD) and a
Project Manager (PM) assisted by one or two Build-
ing Scientists (BS), all of them with around 20 years
of experience. The remaining team members are Ar-
chitects I, II and III, ranging from 15 to 3 years of ex-
perience. These teams have regular internal meet-
ings, meetingswith consultants andwith clients. The
case studies are a High School, and a Research Facil-
ity. Even though they differ in terms of design in-
tent, strategy, location and program, they share the
same objectives: Maximizing daylight illuminance
and minimizing energy consumption.

Case Study 1: High School
The High School case study is the design of the enve-
lope of a four-story classroom building. The original
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design intent was providing a sense of randomness
by exploring different combinations of overhang and
vertical fins by orientation. They are supposed to
wrap a fully glazed surface that hypothetically per-
form equally in terms of daylight and solar radiation
reductionon the facadewhile preserving the appear-
ance of randomness. Sixteen parameters ranging
from three to five options creates a design space of
8,1 billion of possible combinations (Table 1).

Table 1
High school case
study design space

Table 2
Research facility
case study design
space

Table 3
Results for case
study 1, High
School

Case Study 2: Research Facility
The two-story research facility explores different at-
tributes for the envelope to control the impact of the
internal loads of the laboratories. It has fenestration
all over the perimeter to bring as much light as pos-
sible. Because of the North South orientation, the
window-to-wall ratios East andWest are low to avoid
potential glare issues. Nine parameter ranging from
two tofiveoptions create adesign spaceof 5,120pos-
sible combinations (Table 2).

RESULTS
The results show the score of the value function af-
ter the normalization of the illuminance and EUI indi-
cators of the entire DoE sample per case study. This
function assigns equalweight to both indicators. The
base line based on the intuitive responses is normal-
ized against of the DoE sample to enable compar-
isons with the results of the PA that are expressed
in terms of minimum, maximum and average value.
The best result of the PA is also expressed on the orig-
inal metric. Finally, the difference in terms of value is
calculates the percentage of improvement between
thebase line and themaximumvalueof theDoE sam-
ple after the PA.

Result Case Study 1
The intuition in the High School case study (Table
4) shows an intuitive approach that minimizes the
depth of the overhang in the south façade and in-
creases the density of the fins. However, the result of
the base line scores 65%of the occupied areaswithin
the desirable illuminance range and the reduction
from 412.4 to 406 kWh/m2 that represents only 1.5%
of improvement of the EUI because of the shading
devices (Figure 1-2). The best results from the PA (Fig-
ure2-3) showan improvementof 21%ofdaylight and
anadditional 1.2% in EUI. The SAdoesnot showa sig-
nificant contribution of the fins for daylight control
compared with the overhangs. In consequence, af-
ter the PA, the design strategy eliminated the fins and
randomness, and specified only overhang depths by
orientation for the final design.

106 | eCAADe 37 / SIGraDi 23 - - Simulation - PREDICTION AND EVALUATION - Volume 2



Figure 1
Parallel Coordinate
Plot showing the
casi study 1 base
line in the context
of the DoE sample

Figure 2
High school base
line

Figure 3
Parallel Coordinate
Plot showing the
case study 2 PA best
result in the context
of the DoE sample

Figure 4
High school PA best
result
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Figure 5
Parallel Coordinate
Plot showing the
case study 2 base
line in the context
of the DoE sample

Figure 6
Research facility
base line

Figure 7
Parallel Coordinate
Plot showing case
study 2 PA best
result according to
the value function

Figure 8
Research facility PA
best result
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Results Case Study 2
The intuition in the Research facility case study (Ta-
ble 4) shows an intuitive approach that minimizes
the window-to-wall ratios in every orientation. Even
though the EUI remains comparative low because of
the conservative attributesof theenvelope, the result
of the base line (Figure 5-6) only scores 41% of the
total areas within the desirable illuminance range.
The SA shows in order of importance a significant im-
pact on the overall performance of the window-to-
wallWest, followedby the glazingU-Value, the SHGC,
and window-to-wall N. The interpretation suggest a
strategy that while increasing the size of the win-
dows to allow more daylight coming in, also increas-
ing the insulation of the building. These fine grain
adjustments are difficult to calibrate without a sys-
tematic approach. The best result of the PA (Figure
7-8 )show performance improvements of 7% in illu-
minance with an additional 2% in EUI. Based on the
PA results, the design team next move was opening
a courtyard in the core of the building to increase the
amount of daylight comingwhilemonitoring the pa-
rameters highlighted by the SA.

Table 4
Results for case
study 2, Research
facility

DISCUSSION
Themigration of the architecture from static to para-
metric relationships, is not only updating the notion
of design thinking, but also questioning the role and
precision of the design intuition. The literature on

design expertise states that experts can build an in-
terpretation of the design problem without major
analyses. The results of the PA of the DoE samples
from different design scenarios show that intuitive
process regularly underperforms recommendations
from the PA process. Even though most of the ex-
perts’ assumptions of this study are in the right track,
the results from the systematic optimization consis-
tently improve the performance of the original in-
tuitive design. Furthermore, they also contribute to
evolve the strategiesbyprovidingobjective feedback
that experts can use tomake design changes. The re-
sults point out that even though their design strate-
gies are viable; their ability to assess potential solu-
tions seems to be less precise making assumptions
for several parameters in trade-off spaces. In fact, the
case studies, that are just a sample of a larger port-
folio of professional projects, show consistent im-
provements after the systematic optimization. Even
though expert designers recognize feasible solutions
in advance, the results of this study show something
slightly different: Their ability to avoid mistakes, and
skip alternatives leading to poor performance. In ad-
dition, representing the wright of every indicator in
a value function seems to be objective method for
searching throughout the design space. Since dif-
ferent of priorities represented as variable weights of
the indicators can lead to different solutions. Finally,
the preliminary results reinforce the contribution of
data driven decision-making processes on maximiz-
ing value from intuitive design strategies.
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