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The field of generative architectural design has explored a wide range of
approaches in the automation of design production, but these approaches have
demonstrated limited artificial intelligence. Generative Adversarial Networks
(GANs) are a leading deep generative model that use deep neural networks
(DNNs) to learn from a set of training examples in order to create new design
instances with a degree of flexibility and fidelity that outperform competing
generative approaches. Their application to generative tasks in architecture,
however, has been limited. This research contributes new knowledge on the use of
GANs for architectural plan generation and analysis in relation to the work of
specific architects. Specifically, GANs are trained to synthesize architectural
plans from the work of the architect Le Corbusier and are used to provide
analytic insight. Experiments demonstrate the efficacy of different augmentation
techniques that architects can use when working with small datasets.
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INTRODUCTION
Generative architectural design is a field of study that
explores the automation of building design inwhole,
or in part. Although a generative design process
need not be done with a computer, the majority of
current research focusses on the development of al-
gorithms that can be run on a computer to create de-
signs. Researchers in the field have explored a va-
riety of algorithmic approaches that run with vary-
ing levels of autonomy in the creation of designs. In
more autonomous roles, developed algorithms take
on the role of primary author with little user input.
In more collaborative roles, they work interactively
with architects to generate designs. Previous work in
these areas has been limited in its ability to demon-

strate significant artificial intelligence in which gen-
erative algorithms are able to learn from and inter-
pret experience to adaptivelymeet goals (Russell and
Norvig 2010). Recent advancements in the field of
Machine Learning (ML), however, open the door to
significantly improve the intelligence of generative
algorithms.

Deep Neural Networks (DNNs) have emerged as
a leading approach inML for both discriminative and
generative learning tasks. Deep discriminative mod-
els have demonstrated the ability to outperform hu-
man experts on classification and recognition tasks,
while deep generative models have outperformed
competing approaches in the synthesis of images.
GenerativeAdversarial Networks (GANs) (Goodfellow
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et al. 2014) are a leading deep generativemodel that
have demonstrated impressive results on 2D and 3D
design tasks. Their exploration in the field of architec-
ture, however, has been limited to the generation of
generic architectural plans and facades (As, Pal, and
Basu 2018, Huang and Zheng 2018, Isola et al. 2017).

This research addresses this gap in previouswork
and contributes knowledge on the application of
GANs in the generation and analysis of architectural
plans from specific stylistic movements in architec-
ture. Specifically, a GAN is trained on a selection of
residential plans by the architect Le Corbusier. The
GAN is then used to synthesize new 2D plan images
in the style of Corbusian planning. A series of experi-
ments test different techniques architects might use
when working with small datasets. They show that
augmentation strategies can be effectively usedwith
small training sets to improve image quality. Lastly,
the research demonstrates how GANs can be used
by architects to provide analytic insight into the deep
organizational structure of specific architectural oeu-
vres.

BACKGROUND
Previous research on generative architectural design
can be divided into five major categories: optimiza-
tion and search; physically-based; generative gram-
mars; general probabilistic; and deep generative
models. Optimization and search algorithms have
been used to synthesize a variety of designs from ar-
chitectural plans (Caldas and Santos 2012), to build-
ing envelopes (Gagne and Andersen 2010, Turrin,
von Buelow, and Stouffs 2011). Physically-based al-
gorithmic approaches have used physics simulation
(Klemmt and Bollinger 2017) and growth models in-
spired by nature to create architectural forms (Dincer,
Cagdas, and Tong 2014). Approaches based on gen-
erative grammars (Stiny 1980) use the iterative ap-
plication of a set of rewriting rules to synthesize de-
signs, and have been used to generate architectural
plans (Stiny and Mitchell 1978), master plans (Ha-
latsch, Kunze, and Schmitt 2008), and facades (Müller
et al. 2006). General probabilistic approaches have

explored the application of Bayesian networks (Mer-
rell, Schkufza, and Koltun 2010) and Markov chains
(Swahn 2018) to learn from example images in the
synthesis of architectural and urban plans respec-
tively. All these approaches surveyed demonstrate
little to no artificial intelligence by the definition pro-
vided by Russell and Norvig (2010), who are lead-
ing researchers in the field of AI. Specifically, they
demonstrate little ability to learn from and interpret
experience adaptively towards the synthesis of archi-
tectural designs.

The last category of generative architectural de-
sign research explores the use of deep generative
models. In contrast to other generative approaches,
deep generative models demonstrate an impressive
ability to learn from a set of examples to synthesize
designs. Generative Adversarial Networks (GANs) are
a leading deep generative model that use two com-
peting DNNs in order to learn the probability distri-
bution that underlies the organizational structure of
a set of training examples (Goodfellow et al. 2014).
Once this probability distribution is learned, the GAN
can synthesize new example instances. For exam-
ple, GANs have been used to generate new designs
of bedrooms based on a collection of photographs
of bedroom interiors (Radford, Metz, and Chintala
2015). They have also learned to synthesize 3D de-
signs of furniture by learning from a training set of
example 3D models of furniture (Wu et al. 2016).
Their use in the field of architecture, however, has
been limited to the generation of generic architec-
tural plans (As, Pal, and Basu 2018, Huang and Zheng
2018) and a variety of facades fromdifferent architec-
tural styles (Isola et al. 2017). In contrast to the use of
GANswith generic, or highly diverse datasets, this re-
search will contribute to this previous work by apply-
ing GANs to the generation and analysis of a specific
architect’s work. The residential plans of Le Corbus-
ier.

METHODOLOGY
A key challenge in working with GANs is procuring
enough training examples. Typical training set sizes
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Table 1
Shows the training
parameters for the
four experiments
conducted.

for peak performance in image synthesis tasks can
contain 10,000 to 50,000 images (Im et al. 2018). Ar-
chitectural datasets, in contrast, can bemuch smaller.
HowdoGANs performon small datasets? What tech-
niques can be used to augment small datasets and
what effects does this have? This research attempts
to answer these questions by working with a small
dataset comprisedof 45plan images fromavariety of
Le Corbusier’s single-family residential projects. Four
different experiments are run on this dataset to test
the effects of different augmentation strategies as
shown in Table 1: test one uses no augmentation;
test two uses augmentation with noise (i.e., produc-
ing additional training examples by addingGaussian,
Poisson, and randomnoise to an original image); test
three uses augmentation with rotation of the origi-
nal images in 90 degree increments: test four uses

noise and rotation. The generated plans produced
from these experiments are then visually assessed
and qualitatively compared.

There are a number of GAN architectures avail-
able for 2D image synthesis for architects to work
with. For this research, the Wasserstein Generative
Adversarial Network (WGAN) (Arjovsky, Chintala, and
Bottou 2017) was selected, because of its relative sta-
bility during training, as compared to other GAN vari-
ants. Figure 1 shows a diagram of the WGAN’s archi-
tecture - which is typical of most GANs. In that ar-
chitecture, a generator DNN and a discriminator DNN
competewith one another. The jobof the discrimina-
tor network is to tell the difference between fake im-
ages created by the generator network and real im-
ages from the training dataset. The generator net-
work, meanwhile, has the job of trying to synthesize

Figure 1
The diagram shows
the generator and
discriminator
networks that
comprise the
WGAN.
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images that will fool the discriminator network. This
competition allows the generator network to build
a model of the probability distribution that under-
lies the training examples, and then to sample from
thatmodel to create new instances that resemble the
training set.

This WGAN architecture was implemented us-
ing the Python programming language with Tensor-
flow. The GAN was trained for 1000 epochs on a PC
with one NVIDIA GTX 1080 GPU. An epoch refers to
the number of training cycles in which the dataset is
passed through the GAN, and the number of epochs
was chosen after initial experiments showed that im-
provement stopped at around this time for most
models. The detailed training parameters can be
seen in Table 1.

RESULTS AND ANALYSIS
The training losses of the WGAN’s generator and dis-
criminator networks for all four experiments can be
seen in Figure 2. Part a of the figure shows the re-
sults of trainingwith no augmentation applied to the
dataset. The loss graph indicates that the discrimi-
nator network quickly learns how to outperform the
generator network, and that the generator’s perfor-
mance fails to improve for most of the training ex-
cept at the very end. In part b of the figure, the
training losses are shown when the dataset is aug-
mented using the addition of noise. This augmenta-
tion technique seems to improve the performance of
the generator network and its loss continues to get
smaller throughout the training. Parts c and d of the
figure show the results for augmentations using ro-
tation and rotation with noise respectively. Both of
these options show a longer trajectory of decreas-
inggeneratorperformance. Theseexperiments show
that the noise augmentation ismost successful of the
four approaches in reducing the loss of the genera-
tor. Further, it shows that the size of the dataset did
not seem to be the determining factor in the training.
The reasons for this are unclear and require further
study.

Figure 2
Shows the training
losses for the
generator and
discriminator
networks for the
following
experiments: a) No
augmentation is
applied; b)
Augmentation in
the form of noise is
applied; c)
Augmentation in
the form of rotation
is applied; d)
Augmentation in
the form of noise
and rotation is
applied.
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Figure 3
Part a-c show
samples of GAN
generated plans
using the original
45 image Le
Corbusier house
dataset with no
augmentation. Part
d-f show samples
generated with
noise
augmentation. Part
g-i show samples
generated using
rotation. Part j-l
show samples
generated using
noise and rotation
as augmentation
strategies.
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Figure 3 shows GANgenerated samples from the
three experiments outlined in Table 1. In parts a-
c of the figure, samples generated with the original
dataset appear fuzzy. This low fidelity is the result
of the poor training performance of the generator
as show in Figure 2 part a. In parts d-f of Figure 3,
samples generated using noise augmentation can be
seen. This simple augmentation improves the visual
fidelity of the generated images to the point where
stairs can begin to be seen. In parts g-i of the fig-
ure, samples generated using rotation can be seen.
These samples seem tobe visually equivalent in qual-
ity to the samples generated with no augmentation.
Parts j-l of the figure, then show samples generated
usingbothnoise and rotation augmentations. The vi-
sual quality of these samples, despite the dataset be-
ing 12 times larger than the smallest dataset, seems
equivalent to the samples produced with no aug-
mentation. The visual quality of the highest perform-
ing augmentation approach still creates images with
low visual quality, in addition to producing designs
which may not practically work. This may be due to
the small training set size and the chosen GAN archi-
tecture. Huang and Zheng (2018), for example, use
the information GAN (Isola et al. 2017) architecture
to generate high resolution architectural plans.

In addition to generating new images, a trained
GAN can also provide analytic insight into the train-
ing set. This is due to the fact that, through the train-
ing, the GAN learns to recognize the low and high-
level image features that define the essential quali-
ties of the training set. These learned features can
be viewed by looking at the activation patterns of
the neural network layers that comprise the gener-
ator and discriminator networks of the GAN. Figure 4
shows activation patterns from selected neural net-
work layers within the discriminator network of the
GAN trained with noise augmentations. Layer one
of the figure shows low-level features like horizon-
tal and vertical edges being learned - represented
by the brighter pixels in the activation map. Layer
two of the figure, shows higher level features such as
walls, windows, and cabinetry being learned. In layer

three, more complex features such as the larger or-
ganizing grid of the house is being learned. Figure
5 then shows samples of the neural network layers in
thegenerator network of theGAN -whichwork in the
reverse order of the discriminator. Both networks can
provide insight into the deep organizational struc-
ture of Le Corbusier’s house plans, but the activation
patterns learnedby theDNNstill require careful study
and interpretation. Further, because there are often
hundreds of neural layers, it can be difficult to know
what each has learned.

Figure 4
This figure shows
activation patterns
from selected
neural network
layers within the
discriminator
network of the GAN
trained with noise
augmentations.

Figure 5
This figure shows
the activation
patterns of select
neural network
layers from the
generator network
of the GAN trained
with noise
augmentations.
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CONCLUSIONS
This research contributed new knowledge on the ap-
plication of GANs in the synthesis and analysis of
architectural plans in the style of a particular archi-
tect. Specifically, experiments were conducted that
demonstrated the use of GANs in the generation
of single-family house plans based on the work of
Le Corbusier. These experiments demonstrated the
efficacy of different data augmentation techniques
when working with small datasets. The experimen-
tal results indicated that noise augmentation outper-
formed competing approaches.

This research also pointed the way towards a
number of areas for future investigation. One area for
such development deals with the use of GANs for an-
alytic insight. There are a number of ways to visualize
the neuronal layers and the filters that are part of a
GAN. But which visualization strategy, or strategies,
might be most useful for different types of architec-
tural analysis? Further, how do different GAN archi-
tectures compare in terms of providing such insight?
Are some better at providing interpretable represen-
tations than others? What are the evaluation crite-
ria that researchers might use to compare models in
this way? The answer to these questions and others,
in relation to how GANsmight be integrated into the
architectural design process, loom large as the disci-
pline seeks to stay relevant in this AI-driven future.
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