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This paper presents the prototyping of new methods by which functionally graded
materials can be specified and produced. The paper presents a case study
exploring how machine learning can be used to train a model in order to predict
fabrication files from formalised design requirements. By using knit as a model
for material fabrication, the paper outlines the making of new cyclical design
methods employing machine learning in which simpler prototypical materials acts
as input for more complex graded materials. A case study - Ombre - showcases
the implementation of this workflow and results and perspectives are discussed.
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1) INTRODUCTION
Contemporary building culture is finding itself in an
era of resource scarcity. The demand for new build-
ings to serve expandingpopulations across theworld
is creating newpressures on thematerials needed for
construction suchas sandandaggregate for concrete
as well as many basic minerals (Valero et al. 2010).
This challenge is inciting research into new material
practices that optimise resource allocation and re-
duce waste (Ramsgaard Thomsen et al. 2019). By
moving from the paradigms of standardisation and
mass production, these new practices position the
making of hyper-specified and functionally graded
materials for site- or use specific application as cen-
tral means of building smarter with less.

This paper discusses the prototyping of new
methods bywhich such complex heterogeneousma-
terials can be specified and produced. The paper
presents a case study - Ombre - exploring the cre-

ation of predictive models in which performance at
high scale can be interfaced with low scale specifica-
tion data. The case study examines how simple pro-
totypical materials can act as input for the specifica-
tion ofmore complex gradedmaterials. By using knit
as amodel formaterial thinking, thepaper speculates
on future fabrication paradigms for a lighter architec-
ture.

The enquiry was first examined in a workshop
with Masters students from CITA Computation and
Architecture.

2) THE SPECIFICATION OF KNITTED TEX-
TILES - AMATERIAL DESIGN PRACTICE
The enquiry builds on CITA’s extensive practice with
knit as a material system (Ramsgaard Thomsen et al.
2008, 2012, 2016). Knit is a highly versatile fabrica-
tion system. The composition and resulting perfor-
mance of knitted textiles can be minutely controlled
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Figure 1
Complex material
specifications in
knit, workshop CITA
Computation and
Architecture

through the arrangement of stitches and the intro-
duction of multiple yarns with different behaviours.
By working at the stitch level, knit allows us to design
materials at micro level. Knit is inherently an additive
fabrication system in which the textile is produced
“to form” thus reducing waste rather than mass pro-
duced and then trimmed (Ramsgaard Thomsen et
al. 2008). As such, knit is an interesting model for a
broader material practice of hyper-specification.

In CITA we have examined the employment of
knit as a material for architecture (Ramsgaard Thom-
sen et al. 2015, 2019b). As part of these enquiries,
we question how performance requirements can be
formalised and interfacedwithmaterial specification.
Former work examines two central methods: 1) sim-
ulation - in which performance is simulated and then

interfaced with fabrication files resulting in shaping
of knit patterns, defined detailing as well as pattern-
ing allowing graded performance across the mem-
brane and 2) sensing - in which local sense data is
interfaced with knit fabrication files enabling local
transformation of pattern structures. This enquiry ex-
tends these investigations by probing how image-
based sense data can be used to train a model by
which fabrication files can be predicted. In Ombre,
the knitted textiles are understood in respect to their
capacity to filter light. By using a set of prototypical
textiles as base information, themodel learns tomap
particular light intensity requirements to particular
knit patterns. The learnt mapping can then be used
to generate fabrication files from formalised perfor-
mance requirements.
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3) GENERATIVEADVERSARIALNETWORKS
In Ombre we apply Generative Adversarial Networks
(GANs) to predict knitting patterns. GANs (Good-
fellow et al. 2014, Goodfellow 2016) are a type of
deep artificial neural network, a particular approach
within machine learning that has driven the major-
ity of recent progress on artificial intelligence across
academic and applied industrial application. Deep
neural networks, which have multiple layers of per-
ceptrons, are particularly well suited to visual tasks
and have been applied to detecting and classifying
objects in images, edge detection and semantic seg-
mentation (Schmidhuber 2015). GANs have been
particularly applied to thegenerationof newdata, in-
cluding the generation of videos and images (Huang
2018) and medical images (Han 2019). This makes
them particularly interesting for architecture, as they
address the problem of representation (Gero 1991)
by allowingdesign knowledge tobe represented and
generated in the form of pixel images - a common
representation within the architectural design pro-
cess. Within architectural research, deep neural net-
works have recently been applied to predict forming
tolerances for robotic metal fabrication (Nicholas et
al 2017, Rossi et al 2018), and GANs to recognise and
generate floor plans (Huang et al 2018a), and for style
transfer (AITIME 2019).

Where traditional architectural models are ex-
plicitly represented, captured via rule-bases or solved
via calculation, machine learning models are predic-
tive. The fundamental goal of this modeling ap-
proach is to generate new information by gener-
alizing beyond known examples (Domingos 2012).
GANs are trained on a dataset of existing images.
They learn to imitate the distribution of informa-
tion within this dataset, which enables the predic-
tion of unseen distributions post training. Training
is achieved via an adversarial process that combines
two different neural networks - a Generative model
that makes instances of new data, and a Discrimina-
tor model that evaluates data for authenticity. Dur-
ing the training process, which typically runs to sev-
eral thousand iterations, the Generator trains to gen-

erate passable data instances, while the Discrimina-
tor trains to classify images coming from the Gener-
ator as fake. In the pix2pix architecture (Isola et al.
2017) we have employed, training data is given to
theDiscriminator inpairs, and theparameters of both
models are adjusted over time until the discriminator
is unable to distinguish generated fromoriginal data.
After training, only the generative model is required
to create new images.

4) THE DESIGN SETUP: WORKFLOW FOR
PREDICTIVE MODELLING OF MATERIAL
PERFORMANCE
The enquiry devises a simple circular workflow in
which an iterative designprocess is formed. A first set
of simple prototypical patterns are devised as train-
ing data for the algorithm. The patterns are knitted
and their resultant shadows recordedunder a robotic
artificial sun allowing us to locate the material and
useprecise sunpaths. For this enquirywe located the
material in Copenhagen, noon, 21st of June.

4.1 The knit file
The present enquiry employs single knit jacquard as
knit structure. Jacquard knitting allows us to knit
complex patterns with continuous lengths of yarn
controlling each stitch individually (Spencer 2). As
the knitted structure foregrounds a chosen yarns, the
other yarns ‘float’ behind the fabric. This allows us to
control the pattern locally. However, the relationship
between the fibres is not binary. Depending on the
chosen yarn types, the floats affect material perfor-
mance both structurally and visually.

4.2 The fabrication environment
Jacquard knit is based on the same punch card logic
as jacquard looms (Spencer 1989). This means that
a binary logic controls the knitting machine and the
changing of the yarns. In early mechanical knitting
machines long paper tapes were used to define pat-
terns on the stitch by stitch level. From the outset,
these first computational codes were used for cus-
tommaterial specification.
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Figure 2
Circular design
workflow for
informed design
iteration.

Figure 3
Float system in
single jersey
jacquard and
resulting knit
structure

Ombre is knitted using a domestic single bed
knitting machine (Brother KH910) with a electronic
control. In their original state thesemachines arepre-
programmed with 900 standard repeat based pat-
terns. By using an AYAB shield (Smith 2016), we are
able to replace that standard hardware with an open
interface that allows us to define our own patterns.
This allows us to control the knitting machine from
the computer employing binary custom bitmap. The
bitmaps are composedofwhite andblack pixels each
representing the two different yarns being used.

In Ombre square samples (40cm*40cm) are pro-
duced from thebitmap input images (130px*215pix-
els). A scaling factor is applied to achieve target di-

mension of the knit samples. This scaling factor de-
rives from preparatory tests , where the relation be-
tween several knitted samples and the correspond-
ing bitmaps is calculated.

In the design-to-fabrication workflow multiple
parameters affect the resulting shadow. Yarn thick-
ness gives a particular density to the knitted sur-
face. Ombre is knitted with two highly different
yarns; a white polyester spun to create a mechani-
cal stretch (0.3 mm) and a black polyester wrapped
with a copper foil (0,1mm). When the two yarns are
combined in the jacquard pattern interesting mate-
rial behaviour is observed. Areas of predominant
white elastomer become dense as the yarn contracts
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Figure 4
AYAB interface,
binary fabrication
file and laser cut
punch cards. Laser
cut punch cards
were used in early
test to understand
the binary logic as
well as horizontal
and vertical repeats.

creating a closed fabric. Areas of predominant cop-
per yarn remain transparent due to the thinness of
the yarn thus revealing the underlying white elas-
tomer floats. As more complex patterns are gener-
ated this intertwining of the dense and the transpar-
ent, the changing reveal of underlying floats and the
mattness of the white elastomer and the reflective-
ness of the copper create interesting shadow plays.

Figure 5
Robotically steered
artificial sun and jig

4.3 Sensing light
In order to evaluate the knitted samples we use the
industrial robot as anartificial sun. By attachingapar-
allel light source to the robot armwe steer themove-
ment of the light based on sun path simulations. The
setup simulates the 1:1material probe in a real world
light context. For this enquiry we use weather data
files (.epw) for Copenhagen as the basis for the sun
path simulation and employ Ladybug for Grasshop-
per to get the robot tool path. In order to switch the
artificial sun on and offwe use a relay triggered by bi-

nary information sent by grasshopper directly to the
robot. We use the low power voltage output from
the robot (24 volt) to trigger the relay and switch on
and off the high-power light source (230 volt). In this
way, we can align the digital simulation (grasshop-
per) with the physical simulation (artificial sun).

The sample is attached to a jig which is placed
under the robot. The jig is a simple adjustable frame
which can hold the knitted sample in front of a
translucent planewhich is used as a shadow receiver.
The jig allows multiple samples to be compared in a
fixed experimental setting. A camera is placed under
the translucent plane to record the shadow move-
ments and the qualitative change of the filtering of
light. The shadow images, together with their paired
fabrication files, are used as the input for the teach-
ing of the neural network. Additionally, the shadow’s
qualitative and quantitative effects are used to steer
further design iterations.

4.4) Design iteration
The first iteration of prototypical knitting patterns
and corresponding shadow effects of the resulting
knitted textiles act as the basis for training our neu-
ral network. The three designed patterns represent
“extremes” of the knitting pattern design space. The
extremes are: a) half of the pattern image is white
and the other half of the image is black, b) all pix-
els in the image are alternating between black and
white and c) pixels change in overlaying radial gra-
dients (for fabrication translated into dithered black
and white image).
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Figure 6
Knit fabrication files
A, B and C: resulting
knitted textiles and
adjusted shadow
maps

Figure 7
Original knitting
fabrication file,
stretched
fabrication file
(training output),
knitting shadow
(training input)
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Figure 8
Three of the
merged 1323
teaching samples
(input left, output
right) - 256 pixel by
512 pixel

Figure 9
Knit fabrication files
A, B and C, shadow
(input), fabrication
file (output),
learned fabrication
output

The three knitted samples are placed in the jig and
recorded. For the training of the neural network we
the sun’s position at noon, 21st of June. The resulting
photographs are resized to match the proportions of
the knitting samples and the brightness values of the
pixels are adjusted to use the full range of brightness
values (0 - 255).

4.5) Data processing
We use the shadow images of the knit and the fabri-
cation files to train the neural network.

and to generate the fabrication file based on a
desired top-down designed shadow effect.

The training data for the neural network is based
on image samples of the knitting fabrication files
(training output) and on shadow images from the
produced knitted textiles (training input). To relate
the knitting fabrication files to the shadow images
of the knitted textiles, the fabrication files are scaled
and stretched to have the same proportions and im-
age size (1536 pixel by 1536 pixel).

In order to generate a dataset of suitable size and
variation to teach the neural network a generalised
relationship between fabrication file and shadow ef-
fect, we use image crops of the three original fabri-
cation and shadow images. The original images are
cropped into overlapping samples of 256 pixel by
256 pixel. This way we create an input and an out-
put dataset with 441 samples for each image equat-
ing 2646 input and output samples in total. This way
we can create ameaningful relationship between the
knittedmaterial and the fabricationfilebasedononly
three knitted samples. The training input and output
samples are merged together for the teaching of the
neural network.

After teaching the neural network we use the
three original shadow images to evaluate the net-
work’s prediction accuracy. The input images are
chopped into samples, run through the neural net-
work and merged back together into large images
afterwards (1536 pixel by 1536 pixel). Through the
testing of different training iterations of the network
(epochs), we found that training the network for for
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80 epochs was sufficient enough to deliver good re-
sults for all three original image pairs. The training
was run for approximately 10 hours on a GeForce
950MX using Nvidia’s Cuda Technology.

The neural network learns to adjust its weights
for all three extreme shadow design cases. Following
this process we use the trained generative model to
makepredictions of fabricationfiles basedondesired
shadow effects. In the final design, we create a gradi-
ent image (a) whichwe use to define desired shadow
zones (b), which is then stamped with shadow tex-
tures (c). We use the texture image, crop it into small
images of 256 pixel by 256 pixel to run it through
the network. The learned output images are merged
back together (d), scaled back to the original propor-
tions of the knitting file (e) and dithered into black
and white pixels (f ). The dithered image is used as
the input for the knitting machine and we produce
the final learnt knitting sample (Fig 10).

5) DISCUSSION
What has been presented here is a prototypical
method. The case study, Ombre, proves that the
workflow of training a model to predict fabrication
based material specification is viable and can allow
more intuitive approaches to realising design intent.
In Ombre, the single jersey jacquard patterning and
complex interchanges between the two fibres and
the floats create unpredictable effects that can not
readily be mapped. Here, the predictive model as-
sists us in driving the fabrication data. The imple-
mentation of a GAN to solve this enquiry is inter-
esting because it is image based and multiscale. In
Ombre, both sense data and fabrication files take
the form of image files. Furthermore, the underly-
ing multi-scale architecture of the algorithm and the
way that smaller subsections of images are parsed
with larger sections is akin to the inherent problemof
material specification in which performance at high
scale requires interfacingwith low scale specification
data. At present some parts of the workflow are still
formative. We can still only predict within a certain
distance from our training data and the process of

generating the input file - the stamping of the image
file - is still placeholdingamoregenerative approach.

5.1) Limitations
The most immediate limitation in this enquiry is that
all training is undertaken on the basis of a relatively
few still images captured at a single time and date.
The opportunity of the artificial sun is the ability
to record multiple light-states and therefore train
the model across multiple performances. As shad-
ows move the mapping between input and output
changes. Further steps are needed train the model
across multiple time-steps. A second limitation is the
choice to work with relatively two dimensional tex-
tile sample. In early tests and during the workshop
we experimented with more three dimensional tex-
tiles which have larger impact on the transformation
of shadow patterning over time. The case study is a
limited enquiry and further work is needed to evalu-
ated the precision of the trained model across mul-
tiple samples with different strategies of differentia-
tion.

5.2) Perspectives
The opportunity of the workflow is to enable a de-
signerly and more intuitive specification of materi-
als. The designer does not need to have in-depth
understanding of how the stitch patterns affect and
change performance. Furthermore the opportunity
is to scale up in complexity. Where Ombre is trained
on a set sample size the model can be implemented
on larger arbitrarily sized and shaped patches which
can otherwise be unmanageable and excessively
time consuming. Finally, the opportunity is also to
transfer these specification strategies onto different
kinds of performance criteria. Where Ombre per-
forms through light filtering thereby creating a di-
rect and easily understandable correlation between
sense data and performance, further work could
transfer these performances into other domains such
as structural or thermodynamic performance where
simulation is difficult and empirical sense data avail-
able.
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Figure 10
a) Gradient image
file describing
design intent of
varying shadow
performance (white
pixels - white
elastomer, black
pixels - copper
yarn), b) shadow
zones defined
across 6 gradients,
c) shadow zones
stamped with
shadow textures for
training d) learned
output, e) scaled
learned output, f )
dithered fabrication
file

Figure 11
Resultant knitted
fabric from learnt
fabrication file

Figure 12
Three dimensional
knit textiles
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