CONTROLING DESIGN VARIATIONS
DESIGNING A SEMANTIC CONTROLER FOR A GENERATIVE SYSTEM

Pedro Engel’
!Universidade Federal do Rio de Janeiro
'pedroengel@fau.ufij.br

This article will describe the recent steps in the development of a computational
generative system based on the selection and combination of ordinary
architectural elements. Built as a Grasshopper definition, the system was
conceived to generate designs of architectural facades and to produce models,
physical and digital, for didactic use. More specifically, The paper will address
the conception of controlling devices, that is, the parts of the computational
system that govern design variations. This process involved two complementary
actions: first, the definition of a clear organizational logic, where elements can
be represented as a data structure that encompasses classes, sub-classes, sets,
libraries and attributes; secondly, the establishment of means to operate the
variations through the use of filters and heuristics based on visual patterns,
allowing varying degrees of automation and user control. It will be argued that
such organizational model paves the way to increase the number of design
possibilities in the future and to and provide means to integrate of architectural
criteria into the generation process. This research has received the support of

CNPq.

Keywords: Algorithm, Parametric Design, Architectural Design, Teaching ,

Physical Model

INTRODUCTION

Governing design generation is a key aspect of com-
putational systems that aspire any degree of automa-
tion. In developing means to govern a generative
process, two issues are vital. First, the question of
how much is humanly controlled and how much is
to be run by a pre-programed algorithm. Secondly,
the question of the means or parameters elected to
inform design generation. If human control is al-
lowed, should design options be selected directly or,

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 369

instead, may one define a set of criteria, as in a brief,
and let the system generate solutions? Or else, if sys-
tem generate designs automatically, how can we es-
tablish means to maximize desirable solutions and
rule out unacceptable ones?

This article aims to discuss these issues by re-
counting the experiment of conceiving the control
devices for a computational system named Super-
grid, which generates facade design by selecting and
combining ordinary architectural elements . The ex-



periment entailed two complementary efforts: first,
establishing a clear organizational logic for the ele-
ments and formal variations in design; and secondly,
defining the controlling devices themselves.

In the first part, as a means to contextualize the
work and the issues at stake, the system will be de-
scribed in terms of its origin and purposes. In the sec-
ond part, the paper will describe how the organiza-
tional logic has been structured in order to allow the
governing of design solutions. The third part will dis-
cuss the means employed to govern design variation
and present four methods actually implemented: (1)
full human control; (2) full random selection; (3) fil-
tered random selection and (4) pattern oriented fil-
tered random. Finally, potentialities envisioned in
terms of pedagogical potential and architectural rea-
soning will be discussed.

SUPERGRID, COMBINATORY SYSTEM

Supergrid is a computational system devised to pro-
duce models of facades - physical and digital —- to
be used as didactic tools for teaching in a second
semester design studio in the Faculty of Architec-
ture and Urbanism of the Federal University of Rio
de Janeiro. The studio focuses on fundamental archi-
tectural issues and on developing design reasoning
by letting students face semi-structured architectural
problems. All exercises follow a kit-of-parts logic
(Love, 2003), where formal variations are restrained
to a limited set of known architectural elements dis-
tributed in a modular grid, as described by Engel and
Eskinazi (2016). The formal language chosen derives,
on one side, from mid-century Brazilian modern eru-
dite architecture and, on the other, from the infill ar-
chitecture of ordinary buildings that are pervasive
in cities that rapidly grew during last century, por-
trayed by Aureli (2014) as a realization of the logic en-
visioned by Le Corbusier for the Dom-Ino system. The
exercise which relates more directly to the Supergrid
is called “Module / Facade as Interface’, which con-
sists of combining basic building parts (beams, pil-
lars, slabs, walls, windows, doors, shades, filters) to
design the front and back fagade of a public building

facing a square. The aim is to put students in con-
tact with an extensive set of fundamental architec-
tural issues pertaining to the facade: visual perme-
ability and privacy, natural lighting and solar intake,
access and use, ventilation and shading, visual com-
position and meaning. One key aspect is to differen-
tiate the structural frame from the closing planes and
shading devices. Besides, it allows students to exper-
iment with the surprisingly wide range of formal vari-
ations permitted by such a restricted set of elements
and, specially, to exercise the syntactical and para-
metric reasoning embedded in the orthogonal mod-
ular system set by the brief.

Supergrid was conceived to produce models that
are used in the studio as didactic tools. They func-
tion as a kind of catalog, presenting a wide range
of possible syntactic variations whose implications
can be discussed in the light of the issues mentioned
above. With the help of these models, teachers can
advocate design criteria by relating formal configu-
rations to their potential performance in actual build-
ing. Hence, Supergrid is, so far, an apparatus to dis-
cuss and think about architecture, not to design it.

In addition, it has been used as an opportunity to
make research by design and to explore compu-
tational issues related to the creation of a genera-
tive system based on the selection, combination and
transformation of predefined elements. The first ex-
periments, described in an article (Engel (2018) in-
cluded creating a Grasshopper definition that em-

370 | eCAADe 37/ SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2

Figure 1

Physical model
generated by the
computational
system, built in the
first phase of
development.



bedded a kit-of-parts logic. Although the work em-
ployed some of the principles present in the litera-
ture about shape grammar (Stiny, 1977; Duarte, 2005;
Beirdo, Duarte and Stouffs, 2009; Eloy and Duarte,
2014; Garcia, 2016), it used neither its characteris-
tic method of rule applications, nor the capability
to recognize emergent shapes (Stiny, 1993; Stouffs,
2019). The system was structured using combina-
tory logic, where formal variations resulted from the
selection and grouping of elements (or parameters)
already present in predefined libraries. In the first
phase the Grasshopper definition allowed to auto-
matically generate line drawings to produce 1:50
physical models via laser cutting. A collection of
joints was carefully devised to allow easy assembly
and neat presentation.

The control of design variations in this phase
was, however, either openly random or humanly op-
erated. Thisimposed limitations the expansion of the
models and made compositional arrangements sub-
ject to the operator’s formal preconceptions. More-
over, the system still did not prevent “unacceptable”
designs to happen (for example, nothing prevented
a balcony without a parapet to be designed), thus de-
sign generated by automatic random methods fre-
quently failed to meet basic architectural criteria.

The second phase advances towards enabling
semi-automated designs generation and to incorpo-
rate design criteria into the system. This required pro-
viding the system with an algorithm that governs the
selection and combination of elements. As described
by Kowalsky (1979), an algorithm is composed of a
logic component - an organizational structure that
logically links all elements in the system - and a con-
trol component - which governs the tasks performed
(STOUFFS and HOU, 2018). In Supergrid, all elements
and varying parameters are part of a logic structure
that can be represented as a database composed of
libraries contained elements with attributes. Such
logic structure allowed the controlling devices to be
conceived as filters that determine which elements
are elective for random selection depending on their
attributes. This paves the way, it will be argued, to

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 371

both expand the system and integrate architectural
design criteria as means of controlling the generative
process, allowing the system to become semantically
coherent.

ALGORITHM, LOGIC COMPONENT

In Supergrid elements are organized in classes and
sub-classes, combined to form sets and assigned at-
tributes related to their formal characteristics. How-
ever as a starting point, the distribution of all ele-
ments and their variations use are guided by a tridi-
mensional grid defined by a few basic parameters:
module, number of spans in x, y and z directions, and
their dimensions (which are multiples of the mod-
ule). The facade plane is divided into “cells”, which are
numbered sequentially, beginning from the bottom
left and following up in the same column. Equally the
lines between two neighboring cells in the facade,
called interstices, are numbered sequentially. These
numbers operate as addresses, allowing the system
to distribute the design variations in the facade.

One way to explain how elements and their vari-
ations are logically related in the system is by clarify
the vocabulary employed.

Module: Parameter that function as a unit for es-
tablishing dimensions. Must be a multiple of 15cm
(which is the measure of a 3mm mdf board in 1:50
scale).

Cell: Space between grid lines in the facade
plane, having the lower left corner as a reference
point. In a building it correspond to the free space
between structural elements.

Interstice: Lines dividing two neighboring cells
in the facade plane. Interstices can be either vertical
or horizontal. In a building they correspond to the
outer limit of pillars (vertical) and floor slabs (horizon-
tal).

Address: Number of a given cell or interstice.

Element: General concept that refers equally to
a specific part of a building or to the kind this part
belongs. Since it is insufficiently precise to help or-
dering the system, a more precise terminology had
to be adopted.



Class: Term used to categorize distinct kinds of
architectural elements, such as ‘pillars;, ‘floor slabs,
‘beams; ‘walls, ‘parapets’ and so forth. Each cell or in-
terstice can, potentially, contains an elements of ev-
ery class.

Sub-class: Portions of elements that exist only
inside one specific class. For example, the class
‘parapet’ contains sub-classes ‘parapet.front, ‘para-
pet.leftside’ and ‘parapet.rightside; referring to the
three parts that may compose a balcony parapet.

Type: Term used to designate the different
shapes the elements of a certain class can assume
within a given class, forming a “library” of types. For
example, the class ‘wall’ has a library of 25 types,
which differ according to the shape of their openings.
Some classes have only one type, as the class ‘pillar;
in which elements are all shaped the same way.

Library: Collection of types of a given class. Is or-
dered as a database structure, containing types and
with their attributes.

Attribute: Defines the characteristics of a specific
type in a library. Attributes are always expressed by a
value or code and may derive from a geometric prop-
erty or be assigned to a type arbitrarily. For exam-
ple, all types in class ‘wall’ have attributes referring
the shape of their openings, such as ‘o_percent’ (re-
ferring to the percentage of the area of the opening
in relation to the total surface of the closing plane), or
‘o_verticality’ (referring to the coefficient that relates
height and width of a given opening). Libraries and
attributes form a database built via Python scripting
using the GhPython component inside Grasshopper.
This internal database is a convenient solution for it
allows to retrieve information from the very shape of
the types present in the library.

Set: Special type of element, formed by the com-
bination of variations of elements pertaining to dif-
ferent classes, forming a set-class. For example, sets
in the set-class ‘facade.depth’ consist of combina-
tions of ‘walls’ and ‘floors’ assuming in positions. Sets
can also have attributes of their own.

Set-class: Term used to categorize sets.

Set-library: Collection of sets that belong to a
specific set-class.

Instance: Specific occurrence of an element in
the model as a result from the generation process.

Variation: Define the designs options allowed
by the system. Variations can mainly be of three
kinds: “toggle” (on/off), “position” and “type”. They
are named in the format ‘class_variation, as in ‘wall_-
position; ‘wall_type; ‘parapet.front_toggle’ or ‘para-
pet.front_type' Variations are assigned indepen-
dently for each cell or interstice in the facade. How-
ever, as we will see, the control component can con-
dition the occurrence of a variation depending on
other variations either assigned to neighboring cells
or to elements of other classes in the same cell.

Variation list: Is a list of values that will command
variations to be applied in each cell or interstice.

h 1§

As mentioned, there are three main kinds of varia-
tions supported. The first, “toggle”, defines if a cer-
tain class of element exists or not in a given cell, as in
a true or false statement. The second, “position”, re-
quires to assign a value that will tell how many mod-
ules an elements, or its edge, will move inwards or
outwards in relation to the facade plane. The third
kind, “type”, consist in choosing which type - which
shape - among those available in a given library, an
element will assume when inserted in a cell.

Also, variations can be designated via the selec-
tion of sets. As mentioned, a “set class” is a spe-
cial kind of class that consists in combining varia-
tions of at least two distinct classes. The sum of all
combinations possible forms a set-library, conjoining
sets with their own attributes. The attributes that re-

372 | eCAADe 37/ SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2

Figure 2

Sets present in the
set-library of the
‘facade.depth’
set-class. All sets
result from the
combination of one
‘wall_position’ and
one ‘floor_position’
variation. Parapets,
lateral dividers and
covering
(corresponding to
the ‘floor_position’
of the cell above)
are automatically
inserted via
mandatory
conditioning.



sult from the combinations of two variation tend to
be more relevant architecturally. For example, the
depth of a balcony as an attribute of the sets in the
set-class ‘fagade.depth’ It results from the combina-
tion of two variations, ‘wall_position’ and ‘floor_po-
sition’ Only the relationship between this two values
can determine whether there is a balcony and what
is its depth. Set classes allow to choose combina-
tions, instead of choosing variations independently.
Still, set classes exist only to facilitate the governing
of variations in the generation process. In the forma-
tion of the model itself, the two variations (‘wall_posi-
tion" and ‘floor_position’) are assigned as separately.

Concluding, distribution and combination of
variations is precisely how the Supegrid performs de-
sign generation. To understand how this is oper-
ated is of major importance to comprehend how the
control component is conceived. Variations are com-
manded by lists that assign values to each individual
cell orinterstice in the facade (value indexed 5 in a list
corresponds to cell orinterstice addressed as 5, for in-
stance). So far, the variations performed the model
are defined by more that sixteen lists that operate in-
dependently to form the digital model. It is through
the composition of all variation lists that the system
operates the different design possibilities. Thus, gov-
erning the composition of lists is equal to governing
the process of design generation.

ALGORITHM, CONTROL COMPONENT

The control component of the algorithm embedded
in Supergrid was designed to allow different combi-
nations of automation and user control. Also, it offers
distinct ways for the user to operate variations, rang-
ing from direct interference in the design of every cell
to the indirect control via filtering devices. In this sec-
tion, four methods experimented to govern design
generation will de described. Before, however, some
explanation regarding the conditioning of variations
will be given.

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 373

Automatically conditioning variations

In Supergrid, conditioning is the term used to de-
fine mandatory restraint of variations, that is, varia-
tions not subject to election in the generation pro-
cess. It consist basically in overriding choice made
by the user, or in automatic generation modes, be-
cause it produced some combination considered in-
valid by the program. Conditioning is relevant part of
the control component, since it prevents the system
to generate designs considered unacceptable. Varia-
tions may be conditioned by the position of the cell
they occupy (ground cells are not the same as top
floor cells) or by other variations happening in neigh-
boring cells or, still, by variations of another class hap-
pening in the same cell.

An example in Supergrid is when a wall advances
outwards. Both the floor above and the floor bellow
must go together with it. To make wall and floor po-
sition intrinsically dependent, the variation ‘floor_po-
sition’ variations is conditioned by the ‘wall_position’
variation in the same cell and in the cell bellow. As
a result of this rule, the system can guarantee that
whenever a wall is pushed outwards, the system au-
tomatically brings out the floor above it. This auto-
matic control device relies on embedded codes, usu-
ally a simple Python script with an “if / then” state-
ment. This logic makes it necessary to establish prior-
ities, defining which variation will be changed when
an unacceptable combination is found.

Methods for governing design generation
In the following section, the experiments in control-
ling design variation will be described and, consec-
utively, discussed in terms of their logic, limitations
and potentialities. Four modes of governing design
variations were experimented: (1) full human control;
(2) full random selection; (3) filtered random selec-
tion and (4) pattern oriented filtered random selec-
tion.

“Full human Control’, as the name indicates, is
a mode where variations rely completely on human
choice. In this mode values have to be assigned to
every individual cell independently (although some-



times, variations selected manually may be overrid-
den by mandatory conditioning). One of the limita-
tions of this method is the interface, which requires a
large number of inputs (which limits the possibility of
expanding the model) and a knowledge of the rela-
tion of cause an effect between input and design vari-
ation. Human governing also means renouncing the
possibility of seeing unexpected designs as an out-
come of the generation process. Design intention is
completely delegated to the user and, therefore, put
forward his or hers preconception and inventiveness
regarding visual composition and design ideas. On
the other hand, this mode - and precisely because it
relies on the operator’s intentions - shows great ped-
agogical potential by turning the kit-of-parts into a

full human control

game-like experience that favors design experimen-
tation within the systems formal language.

“Full random selection” is on the opposite side of
the control-automation scale. Here all electable vari-
ations are subject to random selection with no limita-
tions besides the mandatory conditioning described
above. The results are always unexpected and tend
to appear unordered. Interestingly, they remind of
the urban landscape in areas of Brazilian cities where
there is nearly no participation of professional archi-
tects in designing the built environment. On the
other hand, these results may seem too unordered
for the eye of trained architects. Also, the full ran-
dom selection gathers disparate solutions, suggest-
ing the inexistence of consistent criteria throughout

374 | eCAADe 37 / SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2

Figure 3

Example of facades
generated with the
four modes of
selection, from top
to bottom: full
human control; full
random selection;
filtered random
selection and
pattern-oriented
filtered random
selection.



the facade. Depending on the intention, it seems
desirable to endow the system with means to apply
some kind of order or consistent logic to the genera-
tion process.

“Filtered random selection” is a mode that allows
the user to limit the number of variations that will
be subject to random selection. User operates by
defining several different filters to elective the vari-
ations ‘wall_type; ‘facade_depth’ and ‘shades’ More-
over, different filtering values may apply for cells
on ground level, intermediary floors and top floors.
The filters are based on the attributes of a given li-
brary of types and are also programmed via Python
scripting. Hence, this method relies heavily on the
database generated within the logic component of
the algorithm. Most filters work by defining mini-
mum or and maximum values accepted for a given
attribute. The program filters out all types whose
value for this attribute fails to fall within the estab-
lished range. Alternatively, filters may be defined as a
range of possibilities. For example, if user states that
the system a facade may allow facade extrusions, but
not subtractions, the random selection will leave out
all ‘facade.depth’ types where ‘wall_position’ recedes
from the fagade plane.

Sofar, filters operate by relating directly to the at-
tributes of a given library of types. Although under-
standable by the developers, this option may seem
too abstract for an average user to operate. A path
yet to be experimented is to congregate filtering val-
ues in predefined scenarios, which may be suitable to
a given design situation. For example, a scenario la-
beled as “south fagade” would favor large glazed win-
dows (if context is south hemisphere and bellow the
tropics), while if labeled “west facade’, it would pro-
vide maximum shading elements, small windows or
variations that result in deep facade compositions.

Another issue verified in this mode of control
is that filters may or may not be used intentionally
to promote visual ordering of the design generated.
Along the developing process, intentions to gener-
ate visually coherent designs led to the formulation
of a fourth mode of control, where user has greater

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 375

control over the visual distribution of the filtered se-
lections over the facade.

“Pattern-oriented selection” applies the same
logic as the method described above, but instead of
distributing filtered variations among ground, body
and top floor, the system allows the distribution of
variations to be guided by a visual pattern whose
configuration is either assigned by user or randomly
formed. The pattern is defined as a matrix filled with
values ranging from 0 to 5, where rows and columns
refer to the cells of a small portion of the building
to be replicated along the facade. When a value is
repeated, the variations assigned to the first occur-
rence of that cell, is also be repeated in the build-
ing. When patterns are assigned manually, genera-
tion process is subject to visual oriented criteria, of-
fering, once again, pedagogical potential to discuss
visual thinking along with the performance oriented
criteria favored by the filtering devices.

DISCUSSION

The experiment recounted in this article is part of an
effort to conduct investigation by design. While de-
scribing the creation of control devices for a compu-
tational system developed in Grashhopper, it hoped
to touch in relevant issues related to the problem
of governing design generation in systems that aim
some degree of automation. A few observations re-
garding such issues may be of value at this point.

Firstly, the experience made evident that a well
ordered logic component is vital to provide means to
developing powerful and flexible governing devices.
Moreover, since the logic component is structured as
a database, it offers the appealing capability of sup-
porting the addition of objects to the system, which
may allow to increase the richness of its design lan-
guage it operates.

As far as the tension between automation and
user control in the governing component, this
issue brings forth concerns expressed by Mario
Carpo (2014) regarding the responsibility of designer
knowledge in the emergence of artificial intelligence
and automated systems: how much is to be left for



the designers to design? The answer to this question
may depend on the intensions and purposes of the
system. Thinking about Supergrid in the context of
design education, the idea of flexible system that al-
lows to switch from human control to automatic gen-
eration is appealing. Human control seems to offer
rich pedagogical potential and an experimental tool.
Hence, probable further development will be on the
way of providing a more human-friendly interface for
the system. On he other hand, while the full random
control appeared to offer lack of order or logic, the
installation of customizable filters in the algorithm
seemed a powerful way to provide indirect control
over the design generation process, calling for a re-
framing of the design thinking, from visual to para-
metric.

Finally, the possibility of constructing means to
translate the numeric operators of the filters in terms
of architectural criteria raises fundamental issues
abouth the nature of design activity. While it poses
the challenge of establishing relationships between
formal variations (the syntactic dimension) and archi-
tectural meaning (semantic dimension), it also pro-
vides rich ground to discuss the thorny issue of defin-
ing design criteria. No need to remind that the ques-
tion of what is an acceptable solution for a design
problem is certainly debatable. After all, design prob-
lems are considered wicked precisely because the set
of criteria adopted to accept or reject a design so-
lution is unstable, open to subjective judgment and
to cultural and historical contingencies (Buchannan,
1992). Hence, just like the conception of teaching ex-
ercises in design education, the conception of gener-
ative systems and the algorithms that govern them -
since they operate with embedded the design crite-
ria - must be seen as design acts in themselves.

This work has received the support of CNPq as
part of the research “SUPERGRID - a kit-of-parts ped-
agogy. Development of a control mechanism for a
computational system envisioning the design of ur-
ban facades” developed with research group LAMO
as part of the Post Graduate Program in Urbanism -
PROURB - of the Federal University of Rio de Janeiro.

REFERENCES

Aureli, P V 2014, 'The Dom-ino Problem: Questioning
the Architecture of Domestic Space, Log, 30(30), pp.
153-168

Beirao, J, Duarte, J and Stouffs, R 2009, ‘Grammars of de-
signs and grammars for designing. Grammar-based
patterns for urban design., Proceedings 23rd Interna-
tional eCAADe Conf.,, 1, pp. 890-904

Buchanan, R 1992, 'Wicked Problems in Design Thinking;,
Design Studies, 8(2), pp. 5-21

Carpo, M 2014, 'The Digital : From Complexity To Sim-
plicity — And Back; SAJ, 6(3), pp. 256-265

Duarte, J P 2005, ‘A discursive grammar for customizing
mass housing: The case of Siza, Automation in Con-
struction, 14(2 SPEC. ISS.), pp. 265-275

Eloy, S and Duarte, JP 2014, ‘Inferring a shape gram-
mar: Translating designer’s knowledge, Artificial In-
telligence for Engineering Design, Analysis and Manu-
facturing: AIEDAM, 28(2), pp. 153-168

Engel, P 2018, 'Supergrid — A Grammar for a Kit-of-
Parts Pedagogy; 4th International Symposium Formal
Methods in Architecture. Unpublished., -, p. -

Engel, P and Eskinazi, M 2016, 'Por Uma Arquitetura
Elementar, Revista Thésis. Associagdo Nacional de
Pesquisa em Arquitetura, 3, pp. 54-76

Garcia, S 2017, 'Classifications of Shape Grammars,, De-
sign Computing and Cognition, -, pp. 229-248

Hou, D and Stouffs, R 2018, ‘An algorithmic design gram-
mar for problem solving, Automation in Construc-
tion, 94(August), pp. 417-437

de Klerk, R and Beirdo, J 2016 ‘Ontologies and Shape
Grammars - A Relational Overview Towards Seman-
tic Design Systems, SPATIAL REASONING AND ON-
TOLOGIES - Volume 2 - eCAADe 34, pp. 305-314

Kowalsky, R 1979 ‘Algorithm = Logic + Control, Commu-
nications of the Association for Computing Machinery

Love, T 2003, ‘Kit-of-Parts Conceptualism: Abstracting
Architecture in the American Academy;, Harvard De-
sign Magazine, 19, pp. 40-47

Stiny, G 1993 'Emergence and continuity in shape gram-
mars, Proceedings of the Fifth International Confer-
ence on Computer-Aided Architectural Design Futures.
CAADFutures '93, pp. 37-54

376 | eCAADe 37/ SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2



