
Visual Input Mechanisms in Textual Programming for
Architecture

Maria João Sammer1, António Leitão2
1,2INESC-ID/IST
1,2{maria.joao.sammer|antonio.menezes.leitao}@tecnico.ulisboa.pt

Algorithmic Design (AD) is no longer foreign to architecture and its methodology
embraces one of the most recent technological revolutions in the field. This
approach lays on Programming Languages (PLs) to define rules and constraints
within an algorithm that, in return, generates geometry in modeling and analysis
tools. PLs can either be visual (VPLs) or textual (TPLs). In architecture, there is
a clear propensity to the use of VPLs over TPLs, due to all the visual features and
mechanisms they provide that make programming more intuitive for architects.
Nevertheless, and even though TPLs are less appealing to learn and use, they
offer clear advantages when dealing with complex programs. Therefore, in order
to bring TPLs closer to their users, we discuss, explore, and implement Visual
Input Mechanisms (VIMs) in Khepri, a new textual programming tool for
architecture.

Keywords: Algorithmic Design, Visual Input Mechanisms, Visual Programming
Languages, Textual Programming Languages, Metaprogramming, Khepri

1. INTRODUCTION
AlgorithmicDesign (AD) is a recent technological rev-
olution in the field of architecture, being an alter-
native approach to the manual generation and ma-
nipulation of geometry within modeling and analy-
sis tools. Therefore, instead of creating geometry di-
rectly in these tools, architects create a program that,
when executed, generates the correspondent model
in a chosen tool. This program is a set of rules and
constraints defined using Programming Languages
(PLs), that can either be visual (VPLs) or textual (TPLs).

VPLs use icons and connections to feed informa-
tion and instructions to the computer, structuring di-
agrams of blocks connected bywires (Schaefer 2011)
(figure 1). According to Noone and Mooney (2018), a
VPL is any PL that allows users to manipulate the un-

derlying code graphically, thus specifying the execu-
tion of a program without textual scripting (Menzies
2002). In a VPL, programs consist of icons that can
be manipulated interactively and according to some
spatial grammar (Myers 1990), i.e. iconic elements
of data - that can contain either values, functions, or
geometry, for example, related between each other
through output-input relations.

Figure 1
Program written in
Dynamo, a VPL [3].

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 7

Contrarily to VPLs, textual programming languages,
as the name suggests, belong to the category of PLs
that use written text to build programs (figure 2), us-
ing a one-dimensional stream of characters (Brown
and Kimura 1994). These programs structure a script
ofwritten instructions anddescriptions that the com-
puter understands andprocesses unequivocally. Just
like any other language in the world, TPLs also obey
specific syntax and semantics.

Figure 2
Program written in
Python, a TPL.

The relative advantages and disadvantages between
VPLs and TPLs have already been discussed in sev-
eral studies (Leitão and Santos 2011, Davis et al.
2011, Leitão et al. 2012, Janssen 2014, Zboinska
2015). However, in the current practice of architec-
ture, there is a clear propensity to theuseof VPLs over
TPLs, due to the user-friendly features and interactive
mechanisms theyprovide that are absent inmost tex-
tual approaches. Nevertheless, TPLs offer clear ben-
efits when dealing with complex programs, which is
a strong argument for the implementation of similar
features, such as Visual Input Mechanisms (VIMs), in
order to bring them closer to architects.

In this investigation, we assess Grasshopper as
a representative example of a VPL and Julia within
Khepri representing the textual approach.

2. AD APPROACH: VPLS VS TPLS
The overall tendency for the use of VPLs is explained
both by the interactivity of building a visual program
and the intuitive and appealing visual features and
mechanisms provided by them. To build a program
inaVPL, architects simplyneed todrag-and-dropand

then connect boxes that represent programming ab-
stractions, such as geometry and functions, a pro-
cess that is more intuitive and closer to the way we
manipulate objects in the real world (Clarisse and
Chang 1986). This dismisses architects from con-
cerning about the intricacies of the implementation
of these abstractions, only focusing on devising the
logic of their design intentions.

Furthermore, VPLs provide a set of mechanisms
that facilitate theunderstandingofwhat is beingpro-
grammed, besides allowingadeeper interactionwith
themodeling tool. Some examples are (1) immediate
feedback, to visualize in themodeling tool and in real
time thegeometry that is beinggenerated andmodi-
fied in the program, (2) traceability (figure 3), to high-
light in the modeling tool the geometry generated
by a selected part of the program, (3) number slid-
ers andBoolean toggles, to easily change the value of
a numeric or Boolean value, (4) gradients and visual
graphs that can be used as inputs to the program,
and (5) Visual Input Mechanisms (VIMs), to allow the
use of geometric shapes as inputs to the program.
Moreover, VPLs also support the use of textual code
within specific abstraction boxes, extending some of
the predefined features.

Figure 3
Grasshopper’s
unidirectional
traceability.

Despite these advantages, VPLs present a serious
handicap whenever the program becomes more
complex. In fact, as the program complexity in-
creases, not only the appealing features described
tend to become less responsive, and even stopwork-
ing for more extreme cases, but the visual program
itself also becomes difficult to understand, manage,
and maintain.

8 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3

Contrastingly, TPLs aremore demanding to learn
and use, being less appealing and more difficult to
master for less experienced users. However, they
offer clear advantages when managing large-scale
programs. Therefore, one of the greatest benefits
of TPLs, when compared with VPLs, is the fact that
the performance and legibility of a textual imple-
mentation are not as compromised with the increas-
ing complexity of the programs created, partially due
to the abstraction mechanisms that hide the pro-
gram’s complexity. This advantage of TPLs is a strong
argument to encourage the implementation of vi-
sual mechanismswithin the textual paradigm so that
both advanced and less experienced users can bene-
fit. Themaingoal is, thus, tomake TPLsmore intuitive
and appealing for architects.

Figure 4
Luna Moth’s
bidirectional
traceability (Alfaiate
et al. 2017).

Figure 5
Rosetta’s control
flow visualization
mechanism (Leitão
et al. 2014).

Previous research already followed this path and pro-
posed selected visual mechanisms within a textual
environment. Some examples are Processing (Reas
and Fry 2007), that already supports immediate feed-
back; Luna Moth (Alfaiate et al. 2017) that imple-
mented both immediate feedback and bi-directional
traceability (figure 4), besides providing user inter-

action mechanisms similar to number sliders; and
Rosetta (Lopes and Leitão 2011) that extended trace-
ability by also implementing control flow visualiza-
tion mechanisms (figure 5) to visualize the sequence
of instructions and decisions made by the computer
while executing a program (Leitão et al. 2014). The
research here presented goes even further along
that path by also combining the most valuable VIMs
within a TPL for AD.

3. VIMSWITHIN A VPL
VIMs are inherent to VPLs like Grasshopper and they
allow the user to select previously modeled geome-
try from amodeling tool and use it as an input to the
program. Themain advantages of thesemechanisms
relate to (1) the use of geometry that is easier to pro-
duce manually and directly in the modeling tool, (2)
the use of already existing geometry, e.g., city plans,
or even (3) the use, as an input to an AD program,
of geometry that was generated as an output of an-
other AD program, for which the Morpheus Hotel [1]
is a successful example.

Within the implementation of VIMs in Grasshop-
per, the user selects the Set One or Set Multiple op-
tions of specific abstraction boxes, the storing com-
ponents representing the input geometry, and then
clicks on the geometry to import directly from the
modeling tool in use. Some of these components im-
port specific types of geometry, e.g., the Point com-
ponent solely allows to import points, while others
are able to import all kinds of geometry, e.g., the Ge-
ometry component.

The intrinsic implementation of VIMswithin VPLs
imply a dependency between the geometry im-
ported and the program that contains it, meaning
thatwhenever that geometry ismodified in themod-
eling tool, those changes are automatically commu-
nicated to the program that generates again the re-
sults accordingly. However, this situation may not
be ideal in many cases, since the AD program be-
comes dependent on a specific document. This re-
quires that both the programand the document con-
taining the shapes imported are reopened simulta-

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 9

neously whenever the user intends to continue to
work and maintain the same previous geometric re-
sults. When that independence is intended, the In-
ternalizeData option becomes useful, as it enables to
fasten the geometry within the component that im-
ported it, loosing, although, its ability to be altered.

4. VIMSWITHIN A TPL
In order to implement VIMswithin a textual program-
ming context, we resorted to a TPL, Julia (Bezanson
et al. 2017), integrated within Khepri, a textual pro-
gramming tool for architecture. Khepri is a new AD
tool inspired by Rosetta (Lopes and Leitão 2011), re-
vising the way architects interact with it, that also al-
lows a single textual program to generate models in
different Computer-Aided Design (CAD), Building In-
formation Modeling (BIM), and analysis tools.

A program created using Khepri represents a set
of written instructions and operations, rules and con-
straints, that, when executed, generates models in a
correspondent modeling or analysis tool. Khepri is
being developed to also incorporate a set of prede-
fined functions that, alike languages like Grasshop-
per, enables architects to focus on higher-level as-
pects of the design, instead of concerning about low-
level implementation details.

Therefore, VIMs were also implemented within
predefined abstractions in Khepri that, similarly to
Grasshopper, when executed, ask the user to se-
lect from the modeling tool the geometry to im-
port. Some of these predefined functions are
select_position, select_point, select_curve,
and select_surface, and they differ in terms of the
type of geometry they import. This approach offers
clear advantages not only when the programs cre-
ated require an incremental or repeated selection of
geometry as inputs, but also by providing immediate
feedback on the choices being made.

However, and unlike Grasshopper, it is indepen-
dence between program and input geometry that
is assured unless told the contrary. In other words,
this approach does not establish a live connection
between the geometry and the program, meaning

that changes in the selected shapes are not taken
into account unless they are re-selected. Neverthe-
less, there are two possible ways to accomplish that
dependence between program and imported geom-
etry: (1) either by informing Khepri that there is a de-
pendency on a set of shapes using the with_shape_-
dependency function, that automatically re-executes
the program when that input geometry is changed,
or (2) by using metaprogramming.

Metaprogramming, in the context of this investi-
gation, encompasses the use of programs that gen-
erate other programs. In our approach, it is used to
generate fragments of an AD program that represent
existing visual inputs, inverting the flow of informa-
tion: instead of creating a fragment within the AD
program that generates geometry in amodeling tool,
the architect incorporates an existing geometry from
themodeling tool within a fragment of a textual pro-
gram. Whenever the fragment generated through
metaprogramming is executed, the same imported
shape is generated in the modeling tool in use.

The relevance of metaprogramming for the im-
plementation of VIMs is in the ability to surpass
the independence inherent to functions, such as
select_position. Therefore, another function was
implemented within Khepri to enable the extrac-
tion of a fragment that represents the geometry se-
lectedwithin the documentwhere it was created, the
capture_shape function. When executed, this func-
tion also asks the user to select a geometry from the
modeling tool and returns a fragment that specifies
both the modeling tool in use and the ID number
of that geometry, e.g., captured_shape(a utocad,
36729). Thus, this approach mimics the behav-
ior of the Set One and Set Multiple operations in
Grasshopper, having the same limitation regarding
themandatory simultaneous operation between the
program and, in this case, the Rhino document from
where the visual inputs were selected.

Besides being an alternative process to achieve
the intended live connection, metaprogramming
also provides a different approach to independence.
By using the predefined function internalize_-

10 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3

shape, it is generated, in the AD program, a
fragment that represents the way the language
would generate the same imported geometry, i.e.,
a specific function with specific parameters, e.g.,
sphere(center = xy(3, 6), radius = 9). This al-
ternative approach surpasses the limitations of de-
pending on a specific CAD document, while also al-
lowing the integration of the imported geometry,
that not only becomes visually available in the pro-
gram, but also becomes editable. This ismore advan-
tageous than Grasshopper’s Internalize Data option
that, on the contrary, fastens thegeometrywithin the
storing component in a way that it can no longer be
changed within its implementation.

In table 1, we summarize the implementation of
VIMs within Khepri, describing the four operations
that establish different relations between the pro-
gram, the CAD document, and the geometry im-
ported.

Figure 6
Nanjing
International Youth
Cultural Center by
Zaha Hadid
Architects, Nanjing,
China, 2018 [2].

5. EVALUATION
In order to evaluate the implementation of VIMs
within the textual programming context, we devel-
oped an architectural design challenge within the
two programming approaches, i.e., using both a VPL,
Grasshopper, and a TPL within Khepri. Both pro-
grams generate the same geometry and require the
use of identical, previously modeled geometries as
inputs.

As a case study, we programmed an attractor
mechanism to simulate a similar effect to the façade

of the Nanjing International Youth Cultural Center by
Zaha Hadid Architects (Nanjing, China, 2018) (figure
6). The generated design inspired by this façade in-
cludes a grid of rectangular openings, whose dimen-
sion vary according to their distance to an attractor
point and a sine function, in order tomimic thewave-
like effect.

5.1. Grasshopper
The visual program created in Grasshopper imports
four different types of visual inputs, namely, a surface
for the façade, a curve for the façade thickness, a ge-
ometry, to describe the window shape, and a point
to locate an attractor (figure 7).

Therefore, the program first analyzes the im-
ported surface to compute a matrix of positions to
then iterate the imported geometry that represents
the openings. Hence, it is extracted a list of val-
ues containing the distances between each geome-
try and the attractor point that is used to scale each
corresponding geometry, creating a pattern. This
pattern is later extruded and subtracted from a wall,
thatwas also generated from the extrusionof the sur-
face along the value of the imported line.

Furthermore, in order to simplify and explore
different natures of attractors, we created a second
version of this program that, instead of generating
a pattern with one single attractor point, explores
Grasshopper’s ability to select multiple inputs within
a single storing component, where we selected mul-
tiple points to create an attractor curve.

The inherent dependence between the geome-
try imported and the program allows generating dif-
ferent versions of this façade by either changing the
position of the attractor point or editing the points of
the attractor curve (figure 8).

5.2. Khepri
Regarding Khepri, wewere able to implement a simi-
lar program that benefits from other assets of textual
programming. For instance, the program takes ad-
vantage of array comprehensions and higher-order
functions such as the map_division function that
applies a function to each element of a generated

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 11

Table 1
Operations
available for the
implementation of
VIMs within Khepri.

Figure 7
Grasshopper
program importing
four different types
of visual inputs: (A)
the surface of the
façade, (B) the
attractor point, (C)
the shape of the
windows, and (D)
the line that gives
the thickness of the
façade.

matrix of values. In this case, it creates amatrix of po-
sitions that is then used to iterate the geometries of
the windows.

Figure 8
Alterations in the
input points of
another
Grasshopper
program that
creates an attractor
curve.

This also represents one of the greatest advantages
of textual programming within Khepri: the ability to
create flexible abstractions such as the attractor_-
windows function, that receives a functiondescribing
the shapeof thewindow tobe iterated along the area
of the surface, as follows:

attractor_windows(f,attractor,length,

height,nx,ny) =
[f(p, attracted_radius(p,attractor))
for row in map_division(

xy, 0, length, nx, 0,
height, ny)[2:end-1]

for p in row[2:end-1]]

In this case, we chose a square, inspired by the Nan-
jing project, but we could have given as a parameter
a circle, or a hexagon, for example (figure 9).

Moreover, the program itself canbe flexible to in-
tegrate into a single script the possibility of selecting
different types of visual inputs. While in Grasshopper
we had to create two similar but independent pro-
grams to generate a façade with one attractor point
or one attractor curve, the textual program can iden-
tify the type of the visual input by the selection per-
formed by the user: he can select (1) one single at-
tractor point, p1, as the first example, (2) multiple
separated positions that work individually as attrac-
tor points, pts, or (3) multiple sequential positions
that create an attractor curve, c, as the second exam-

12 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3

ple in Grasshopper. Therefore, when the program is
executed, it is able to identify the request of the user
and choose which of those functions to perform, as
follows:

Figure 9
Different shapes for
the openings of the
façade.

attracted_radius(p, attractor) =
min_radius+(max_radius-min_radius)
*(sin(frequency*min_distance(

p, attractor)
+phase)+1)/2

minimum distance to a point
min_distance(p, p1::Loc) =

distance(p,p1)

minimum distance to a list of points
min_distance(p, pts::Locs) =

minimum(map(p1->distance(p,p1),pts))

minimum distance to a spline curve
min_distance(p, c::Spline) =

min_distance(p, division(c, 20))

Another interesting advantage is the ability to stage
operations: for a single attractor point, for instance,
the user first selects successive positions until he
finds one that pleases him. During this process, the
interaction between the user, the tool, and the pro-
gram being generated simulates Grasshopper’s im-
mediate feedback. Only after the architect chooses
the final position of the attractor, the program is al-
lowed to computemore demanding operations. This
means that Khepri enables the creation of computa-
tional stages, which has a positive impact on perfor-
mance, allowing to postpone more time-consuming
operations to after other simpler decisions aremade.
This process is implemented as follows:

let p = nothing

1st phase: loop until final choice
while (new_p = select_position()) !=

nothing
p = new_p
delete_shapes(output)
with(current_layer, output) do

quick visualization
create_windows(facade_surface,p)

end
end

2nd phase: create the facade
create_facade(facade_surface,

thickness_curve, p)
end

In this case, the more demanding operations are the
subtraction of the parallelepipeds from a wall. These
functions are created to also be flexible and capable
to receive as inputs the resulting data of the analy-
sis of an imported surface and line, to obtain the size
of the iteration and the thickness of the wall, as per-
formed by the program in Grasshopper.

6. KHEPRI AND THE TEXTUAL APPROACH
Considering that our discussion is contextualized
within a specific textual programming tool for archi-
tecture, Khepri, we extended the implementation of
VIMs to integrate and illustrate some of its most rele-
vant advantages.

Some of the main benefits of the textual ap-
proach regard to the flexibility of the abstractions
and programs created. The sophisticated abstrac-
tions such as higher-order functions, the immediate
interactivity with the modeling tool, and the interac-
tion phases are some of the mechanisms enabled by
textual programming.

Furthermore, and regarding Khepri in particular,
one of its greatest advantages is related to portabil-
ity, a feature that allows a single program to generate
the same geometry in multiple back-ends, i.e., differ-
ent modeling and analysis tools. Therefore, in addi-
tion to generating this façade in AutoCAD, the CAD

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 13

tool that was chosen for this evaluation, we also gen-
erated the same geometry in Revit, a BIM tool.

In Khepri, and unlike Grasshopper that requires
an extension through complex plug-ins to connect
with BIM tools, this portability is simple, as the user
simplyneeds to informKhepriwhichback-end touse.

Nevertheless, in order to generate geometry in
different back-ends, the user should predict the type
of information itwill require, as theprogramwill need
to incorporate as much information as required by
the most demanding tool it will connect to, e.g., BIM
tools require more information from a program re-
garding the objects to use than CAD tools, that solely
deal with pure geometry.

Therefore, in order to simulate a constructive so-
lution for the generated façade, we imported a family
of windows pre-modeled in Revit that had the par-
ticularity of having a parametric width and height.
Thus, when incorporated into the program, this fam-
ily scales to this extent, maintaining the same effect
accomplished with the CAD tool (figure 10).

This connection with BIM tools may sometimes
require compromises regarding thedesignoutcomes
when using the predefined families available. For
instance, the majority of the existing window fami-
lies did not allow parametrization due to the specific
properties inherent to each family. If we had cho-
sen one of those windows, they would not be able
to scale, and the façade would lose the attractor ef-
fect. One possible solution is the manual generation
of personalized families of objectswithin Revit, incor-
porating parametric variables in the dimensions of
those objects.

This research within Khepri enabled the exten-
sion of VIMs to another paradigm, allowing a pro-
gram that imports geometry from a CAD tool to also
generate 3Dmodels in a BIM tool. However, there are
some considerations to acknowledge regarding the
performance of the implementation of VIMs in a tex-
tual programming context.

A program developed in Grasshopper benefits
from a deep integrationwithin the CAD tool in which
the language is implemented. This allows the visual-

ization of geometry in themodeling tool that has not
yet been computed, i.e., that was not generated as
geometric data in Rhino. Thus, mechanisms such as
immediate feedbackbecomemoreperformant, since
heavy operations are not being executed. These op-
erations, such as Bake, are only performed at the
user’s request, who can then choose when the pro-
gram is ready to generate the final geometry in the
modeling tool.

Figure 10
Portability of
Khepri: generation
of the same
geometry in a BIM
tool, Revit.

This process doesnot happen inKhepri, since, at each
iteration, it is always generating geometry which,
being a demanding computation, compromises the
performance of the program. Even so, sequential in-
teraction mechanisms allow to partially circumvent
this limitation, enabling the user to decide when to
establish a live connection with the tool or when to
compute these more demanding operations.

14 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3

7. CONCLUSIONS
In an architectural practice that is increasingly em-
bedding new technologies, Algorithmic Design (AD)
is an alternative to the conventional design and visu-
alization methods that has been contributing with a
number of advantages to the discipline. Within the
AD practice, there is a noticeable tendency for the
use of Visual Programming Languages (VPLs) over
textual ones (TPLs) among architects. Unfortunately,
despite providing intuitive features andmechanisms
that make them more interactive and appealing for
their users, VPLs struggle to scale with complex pro-
grams. On the other hand, TPLs are less encouraging
to use due to their steeper learning curve and lack
of interactivity. Nevertheless, their advantages for
the development and maintenance of complex pro-
grams are strong arguments to work on their appeal
to architecture by implementing visual features and
mechanisms.

Visual Input Mechanisms (VIMs) in a textual pro-
gramming context, besides allowing the use of ge-
ometry previously modeled as input, also proved to
bring textual languages closer to theuserby support-
ing a more dynamic interaction with the modeling
tool.

In this paper, we assessed the current integration
of VIMswithin Grasshopper, a VPL, andwithin Khepri,
a textual AD tool for architecture, by developing a hy-
pothetical design problem in both paradigms. The
comparison of both approaches promoted a more
complete integrationof VIMs in the textual approach,
by either allowing the dependence or independence
from themodeling tool in use. Those effects were ac-
complished through the use of metaprogramming, a
textual programmingmechanism that generates the
program fragment that describes the indended in-
put, either referencing it directly or by extracting its
properties and producing an expression that gener-
ates an equivalent shape.

Nevertheless, some issues regarding perfor-
mance should be considered by the user when
choosing the type of interaction with the modeling
tool. Considering that VIMs within Khepri require the

continuous generation of geometry in the modeling
tool, whereas Grasshopper enables a temporary visu-
alization of what can be generated by the program,
there should be a compromise between the inter-
activity and the time used to perform those mecha-
nisms.

Furthermore, and even though the textual ap-
proach is less appealing and intuitive for less expe-
rienced users, it still brings further advantages re-
garding: (1) the support of a greater design complex-
ity - without compromising the legibility and per-
formance of the program created, (2) the improve-
ment in the program’s performance - by supporting
sequential interactionphases, that allows toonly per-
form computationally demanding operations when
precedent decisions are made, (3) the increased
range of combinations of the available operations,
freeing the user from pre-defined abstractions, and
(4), regarding VIMs in particular, the greater flexibil-
ity in manipulating and integrating the data of the
imported geometry. Furthermore, in the particular
case of using Khepri, these advantages are further
extended by also (5) allowing the integration within
other modeling tools, such as Revit, a Building Infor-
mation Modeling (BIM) tool.

ACKNOWLEDGMENTS
This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with
references UID/CEC/50021/2019 and Project Khepri,
PTDC/ART-DAQ/31061/2017.

REFERENCES
Alfaiate, P, Caetano, I and Leitão, A 2017 ’Luna Moth:

Supporting Creativity in the Cloud’, ACADIA 2017:
DISCIPLINES & DISRUPTION, Proceedings of the 37th
Annual Conference of the Association for Computer
Aided Design in Architecture (ACADIA), MIT, Mas-
sachusetts, USA, p. 72–81

Bezanson, J, Edelman, A, Karpinski, S and Shah, VB 2017,
’Julia: A Fresh Approach to Numerical Computing’,
SIAM Review, 59, p. 65–98

Brown, TB and Kimura, TD 1994, ’Completeness of a Vi-
sual Computation Model’, Software – Concepts and

Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3 - eCAADe 37 / SIGraDi 23 | 15

Tools, no. 15, p. 34–48
Clarisse, O and Chang, SK 1986, ’Vicon: A Visual

Icon Manager’, in Chang, SK, Ichikawa, T and
Ligomenides, PA (eds) 1986, Visual Languages. Man-
agement and Information Systems, Springer„ Boston,
MA, USA, pp. 151-190

Davis, D, Burry, J and Burry, M 2011, ’Understanding vi-
sual scripts: Improving collaboration through mod-
ular programming’, International Journal of Architec-
tural Computing, 9(4), p. 361–376

Janssen, P 2014 ’Visual Dataflow Modelling: Some
Thoughts on Complexity’, Fusion - Proceedings of the
32nd eCAADe Conference - Volume 2, Department of
Architecture and Built Environment, Faculty of Engi-
neering and Environment, Newcastle upon Tyne, p.
305–314

Leitão, A, Lopes, J and Santos, L 2014 ’Illustrated Pro-
gramming’, ACADIA 2014: Design Agency, Proceed-
ings of the 34th Annual Conference of the Association
for Computer Aided Design in Architecture (ACADIA),
Los Angeles, USA, p. 291–300

Leitão, A and Santos, L 2011 ’Programming Languages
For Generative Design: Visual or Textual?’, Respect-
ing Fragile Places: 29th eCAADe Conference Proceed-
ings, University of Ljubljana, Slovenia, pp. 139-162

Leitão, A, Santos, L and Lopes, J 2012, ’Programming
Languages For Generative Design: A Comparative
Study’, International Journal of Architectural Comput-
ing, 10(1), pp. 139-162

Lopes, J and Leitão, A 2011 ’Portable generative design
for CAD applications’, Integration Through Computa-
tion - Proceedings of the 31st Annual Conference of
theAssociation forComputerAidedDesign inArchitec-
ture, ACADIA 2011, Alberta, Canada, p. 196–203

Menzies, T 2002, ’Evaluation Issues for Visual Program-
ming Languages’, in Chang, S (eds) 2002, Handbook
of Software Engineering and Knowledge Engineering,
vol. 2: Emerging Technologies, World Scientific Pub-
lishing Co. Pte. Ltd, London, pp. 93-101

Myers, BA 1990, ’Taxonomies of visual programming and
program visualization’, Journal of Visual Languages &
Computing, 1(1), pp. 97-123

Noone, M and Mooney, A 2018, ’Visual and Textual Pro-
gramming Languages: A Systematic Review of the
Literature’, Journal of Computers in Education, 5(2),
pp. 149-174

Reas, C and Fry, B 2007, Processing: a programminghand-
book for visual designers and artists, The MIT Press,
Cambridge, Massachusetts & London, England

Schaefer, R 2011, ’On the limits of visual programming
languages’, SIGSOFT Software Engineering Notes,

36(2), pp. 7-8
Zboinska, MA 2015, ’Hybrid CAD/E platform support-

ing exploratory architectural design’, CADComputer-
Aided Design journal, 59, pp. 64-84

[1] https://vimeo.com/203509846
[2] https://www.zaha-hadid.com/architecture/nanjing-
culture-conference-centre/
[3] http://www.theprovingground.org/2013/07/autode
sk-edu-videos-computational.html

16 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3

