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Collaborative Robots, or Cobots, bring new possibilities for human-machine
interaction within the fabrication process, allowing each actor to contribute with
their specific capabilities. However creative interaction brings unexpected
changes, obstacles, complexities and non-linearities which are encountered in
real time and cannot be predicted in advance. This paper presents an
experimental methodology for robotic path planning using Machine Learning.
The focus of this methodology is obstacle avoidance. A neural network is
deployed, providing a relationship between the robot's pose and its surroundings,
thus allowing for motion planning and obstacle avoidance, directly integrated
within the design environment. The method is demonstrated through a series of
case-studies. The method combines haptic teaching with machine learning to
create a task specific dataset, giving the robot the ability to adapt to obstacles
without being explicitly programmed at every instruction. This opens the door to
shifting to robotic applications for construction in unstructured environments,
where adapting to the singularities of the workspace, its occupants and activities
presents an important computational hurdle today.
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INTRODUCTION
Within the realm of automated manufacturing, in-
dustrial robots are programmed to run at full speed
within fenced and clearly structured production en-
vironments, performing repetitive tasks. However,
their introduction within the creative architectural
realm over the last decade has shifted what we con-
sider the role of these machines to be (Scheinman
et al. 2016). Architects and designers are develop-

ing novel fabrication methods using robots, and ex-
perimentingwith constructionmethods inwhich hu-
mans interact in and influence the sameenvironment
as robots. This motivates a need, not only for smart
machines that can adapt to a changing surround-
ing, and react to the materiality of their production,
but also for greater flexibility and ease in robotic pro-
gramming (Braumann et al. 2016). The creative com-
munity has developed design-environment-based
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robot control tools such as KUKA|prc [1], HAL [2] and
Robots [3] which require the designer to manually
draw and adjust toolpaths curves until the robot can
follow without any collision. This requires knowl-
edge and custom calculation of obstacle position
and avoidance parameters in advance. Thus, com-
plex path planning and environmental sensing re-
main difficult to integrate. Haptic teaching, through
direct human-robot interaction, offers the possibil-
ity to explore alternatives to complex robot program-
ming that can be applied in a safe non-fenced re-
search lab environment.

COBOTS
This paper focuses on table-top Collaborative Robots
(Cobots) and the potential they can offer coupled
with Haptic Learning. First conceived in the late
1990s as productivity tools for small-scale assem-
bling in the automotive industry (Peshkin et al. 2001),
Cobots have quickly become a symbol of Industry
4.0, marking the rise of smart auxiliary machines that
can work alongside humans in a safe close environ-
ment. Established industrial robotic manufacturers
have entered the Cobot market, ABB with the dou-
ble handed YuMi-IRB 14000, and Kuka with LBR iiwa,
competing with younger producers such as Univer-
sal Robots. Cobots are mechanically different from
their industrial counterparts: They present slender
and light bodies, and no sharp edges to minimize
the possibility of user harm. They have a relatively
long reach due to their wide rotational range, but
smaller payload capacity. Most importantly, every
axis is equipped with force-torque sensors enabling
the robot to feel and react to contact and pressure
at every joint. This enables motion to be halted in
case certain thresholds are exceeded, preventing in-
juries, and self-damage. Another important differ-
ence is the introduction of Manual Compliant Mode
(MCM). This mode allows to release the brakes of the
motor, so each axis can be easily manipulated by the
user, while a mechanism compensates for eventual
weights of tool and workpiece in order to avoid colli-
sion with the base. For the scope of this research we

Figure 1
UR5-e equipped
with a Robotiq
gripper, haptically
guided by the User

use a Universal Robot UR5-e (figure 1), with input via
MCM a key part of the workflow.

CURRENT PATH PLANNING APPROACHES
Parametric Instructions -
Digital Programming
Robotic fabrication in architecture exploits their
potential as constantly re-programmable tools for
customised, non-standard fabrication (Bonwetsch
2015). Recent research has demonstrated how the
inherent precision and programmability of industrial
robots opens up new opportunities for customised
design, in particular aroundmaterials, forms and con-
struction methods that are geometrically complex,
high-precision or high-tolerance (Bloss 2014)(Brell-
Cokcan and Braumann 2010), as well as the require-
ment to match robotic fabrication with ‘fabrication-
aware’ design approaches that incorporate mate-
rial and fabrication limits into process of speci-
fying robotic commands (Nicholas 2018)(Menges
2012)(Svilans 2019). Creative usage of robots is facil-
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itated through geometry-based visual programming
tools (for example GH on Rhino) which allow to im-
mediately visualise fabrication feedback, and update
the instructions if any change to the geometry is
made without incurring a significant overhead com-
pared to common off-line programming methods,
since the relationships between the elements are de-
fined parametrically. It also allows for mass customi-
sation of components deriving from the same para-
metric workflow. This process is especially useful for
repetitive applications such as additive manufactur-
ing, milling, or assemblies (Stumm et al. 2016).

However, in some cases the complexity of the
path planning and collision detection and solv-
ing goes beyond what is straight-forwardly pro-
grammable in the parametric design environment.
This is the case encountered during the develop-
ment of multi-robot geometrically-irregular (Gandia
et al. 2018). This research utilised existing tools
for path planning developed for autonomous mo-
bile robots. For example, the Open Motion Planning
Library (OMPL) [4], that consists of many state-of-
the-art sampling-basedmotion planning algorithms,
that use different path optimizers, as well as collision
detection. It is implemented through the Robotic
Operating System (ROS) [5] which runs on Linux and
requires a considerable amount of robot program-
ming experience. Research were successful at mak-
ing use of OMPL to program multi-robot assemblies,
by developing a pipeline pushing data from the de-
sign environment, to VRep ( a windows-based wrap-
per for OMPL) [6] through a container platform as
part of the Compas framework [7]. However, they re-
port the need for a faster, simpler and more intuitive
control directly from the design environment, with-
out the need to learn how to use the other softwares
involved in this process.

In this case, even though the tools used orig-
inated from the field of mobile robotics, the path
planning strategy was a global one: To find an op-
timal path avoiding any collisions given known start
and end points and obstacle positions. Optimal
paths are created within the programming environ-

ment with the element, manipulator and obstacles
mapped. However the time cost of these algorithms
means that they are not suitable for implementation
in real-time, as they sometimes cannot find a solution
and the assembly sequence has to be restarted from
scratch. Conversely, in the world of mobile robotics,
path planning strategies are local, and they leverage
localized sensor feedback technology to avoid colli-
sions with dynamic obstacles. They can thus be im-
plemented without complete knowledge of the en-
vironment and require far less computation.

Repetitive Instructions-
Haptic Programming
Robotic Fabrication in industrial contexts, using
cobots, exploits their potential as very easily pro-
grammable tools through Kinesthetic Teaching -or
learning by demonstration, which is defined as the
intuitive nature of teaching robotic task through di-
rect physical interaction (Welschehold 2017). This
method allows to overcome difficulties of more ad-
vanced robotic methods (Iturrate 2017), and guar-
antees that the taught motion is both efficient, safe,
andmost convenient to the robot joint configuration.
The robot operator puts the robot in Manual Compli-
antMode (MCM), andmoves the robot to the desired
position, records the target using the electronic pen-
dant, and then on to the next one. While easy and
fast, the goal of programming through Kinesthetic
Teaching is for the robot to just repeat the task as
taught. The teaching is thus “one-time-use”, since the
recorded motion is very specific to the task and the
workspace calibration.

The inability to reuse recorded teachings is re-
garded as a major shortcoming of kinesthetic teach-
ing, andcritically limits its potential in thefieldof con-
struction and assembly, especially in unstructured
environments. One approach aimed at addressing
this problem is tomove away from teaching for repli-
cation, to teaching for adaptation (Stumm and Brell-
Çokcan 2018). Using a simplified CAD environment,
a predefined robot path is digitally programmed, and
defined as a sequence of motion primitives. Then,
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when physically running, this ideal path is adapted
to the tolerances of the physical world through hap-
tic programming by the robot operator at the start of
every motion primitive. This approach uses human-
robot interaction as short circuit to complex envi-
ronment aware programming and sensing feedback,
however, the user is not allowed to move the robot
beyond the preprogrammed spatial interval of oper-
ation. Further efforts are currently directed at direct
usage of recorded kinesthetic teaching data to de-
rive haptic motion primitives. Cobots do allow for
motions to be easily recorded and streamed, how-
ever, a considerable amount of work needs to go into
cleaningof recordings, and relating themtogoals the
robot is set to complete (Stumm et al. 2019).

AHYBIRD ROBOTIC PROGRAMMING
APPROACH
Neural-Networksmeet Human-Robot
Collaboration
While Neural Networks are widely established in the
field of mobile robotics to establish vision-based on-
the-fly navigation decisions and motion within their
environments (Zou et al. 2006), their usage to control
the motion of robotic arms is limited. However, we
believe that the use of Neural Networks can aid the
generation of robotic motion fromwithin the design
environment. By combining Neural Networks with
Robot-Human collaboration, we are able to bridge
the gap between the generic dataset with and the
physical environment the robot needs to operate in,
through haptic inputs.

We develop an experimental approach that al-
lows for the robot to generalize and learn both from
a digital dataset and from previously recorded mo-
tions, rather than replicating any of the two per
se. The NN-powered robot develops an intuition on
how to autonomously handle motion, and obstacles
within its environment. Our approach capitalizes on
open source plugins available for Grasshopper visual
programming environment for Rhino, and provides
control in an easy and fast way without leaving the
geometry software, where the robot’s task is para-

metrically defined, in the case of architectural ap-
plications. We believe this makes advanced robotic
control available for creative users who are familiar
with geometry software. We call this method “Haptic
Learning”.

Our approach learns from precedent experi-
ments utilizing Neural Networks with robotic tasks.
For instance, (WuandKilian2018)usea convolutional
neural network trained with a collecteddatabase of
stochastic assembly experiment images, to suggest
assembly positions of desired topological connec-
tions. However, relying on external sensor feedback
via images of the robot’s pose and position through
space, or scans of the assembled logs to compile the
dataset, significantly increases possibilities for data
loss and inaccuracies. Our approach instead utilises
clean and controlled digitally generated data, cou-
pledwith live joint position streaming from the robot
controller when the robot is guided in MCM by the
user. Using a data handling, prepping and wrap-
ping approach similar to that developed by (Rossi
and Nicholas 2018), we are able to control the work-
flow directly from within the design environment.

METHOD
The method is fully developed on Grasshopper for
Rhino, and is tested to control a UR5-e. It is devel-
oped in three stages described below.

Data Generation &Network Training
The initial step is to generate data to train the neu-
ral network. Using a combinatorial algorithm, we are
able to generate a great amount of digital data via
simulation in a short period of time. To run the sim-
ulations, we use Robots [3] plugin for Grasshopper,
andcreate adataset of inputgeometrical information
and output robotic joint configurations. This data is
then normalized and wrapped into tensors. Using
Owl [8] plugin for Grasshopper, we train a Deep Neu-
ral Network, using Accord.Net backend. The output
of the network is then unpacked and evaluated. The
great advantage of using Grasshopper as an environ-
ment, is that it allows to visualize not only the output
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Figure 2
Localized obstacle
avoidance on a
toolpath. The
colliding path is
split and an
obstacle avoidance
routine output by
the network is
grafted and
blended.

of the network, but also the training phase, making
it really easy to understand the process, debug any
problems, and work with the learning parameters in
an immediate and intuitiveway. It also avoids unnec-
essary hassle in dealing with different file formats for
handling the data or the network in other environ-
ments.

Spatializing avoidance strategies
Another advantage of working within the geometric
environment is that it makes it very easy to integrate
the output of the neural network, in terms of obsta-
cle avoidance, to the robot path that is parametri-
cally being programmed with workflows described
in section “Parametric Instructions - Digital Program-
ming”. It thenbecomespossible togenerate thepath,
detect obstacles, push the geometric parameters of
the obstacles to the neural network, and then blend
in the obstacle avoidance routine output from the

neural network back into the original path (figure
2). Therefore it becomes really important to go be-
yond a generic response to obstacles, but rather to
develop a relationship between the relative position
of the obstacle and the robot pose, and the reaction
the network suggests to use in order to avoid clash-
ing. This conditioning can be easily integrated in the
trainingdataset, sinceweareusingageometrybased
digital robot simulation.

Haptic Learning
Although all of our approach so far has been digi-
tally based, Haptic inputs are crucial for real-life sce-
narios and applications. When dealing with com-
plex, task specific applications, it becomes far more
sensed to start from a safe and efficient human in-
put, rather than trying to digitally generate all pos-
sible combinations of all possible motions. In fact,
thiswould also act to thedetrimentof theNeuralNet-
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Figure 3
Haptic Learning
Workflow. Physical
inputs tune the
digital dataset.

work’s accuracy, sincemultiple inputswouldhave the
same output. The method we developed allows to
use physical training to make the digital dataset re-
spond to the specificity of the physical situation. It
allows to explicitly tune the dataset using implicitly
embedded physical hyperparameters, such as pre-
ferred avoidance strategies, offset between the ob-
stacle and the robot to account for the tool and po-
tential objects it is carrying, and the zone of the mo-
tion. This becomes very important when the robot is
holding a tool which is not orientation agnostic, for
instance. By using a custom GH python component,
we are able to have this happen again within the de-
sign environment, with a few passes needed to be
performed by the robot operator prior to the start of
task execution.

EXPERIMENTS AND RESULTS
Linearmotion
The first experiment served as a proof of concept of
the methodology. The network was fed paths com-
posed of single segment going from left to right. The
segments followed a sampling grid (figure 4a) of the
robot’s reach range, and had different lengths. The
network outputted a series of joint targets the robot
would have to follow to go from start to end of the
test segment. The validation data consisted of seg-
ments thatwere not in the sampling grid, whether by
position or by length. The network scored an error on
the cost function of 0.008 after 2000 iterations, train-
ing on 800 tensors. When observing the actual angle
values of the joints, the variations fall within an ac-

ceptable tolerance for obstacle avoidance (figure 5a).

Obstacle along line
The second experiment introduced the obstacles to
the above experiment. Again a sampling grid was
generated with an obstructing cube at the middle
point of the path. The geometric coordinates were
fed to the network, which again outputted the joint
targets for the robot. The robot scored an error of
0.003 after 1000 training iterations on 800 tensors.
The validation tests showed that the network was
able to adapt not only to curves in unknown posi-
tions, but also to different positions of the obstacle
along the line, which it had not previously trained on.
Thismeant that it was able to generalize the relation-
ship between curve, obstacle, and pose.

Obstacle with respect to robot pose
Rather than populating the robot’s reach range with
path curves, in this third experiment we populate it
directly with obstacles (figure 4b), and defining how
the robot should react to them using geometric con-
ditioning, for instance whether the robot should go
around it from the top, or from the bottom. These
geometric coordinates are fed to the neural network,
which again outputs joint targets for the robot. The
robot scored an error of 0.006 after 2000 training iter-
ations on 2500 tensors. Validation tests show that the
robotwas able togeneralize toobstacles that thenet-
work had not trained on, while maintaining the pre-
ferred avoidance strategy depending on which zone
the obstacle was located in (figure 5b).
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Figure 4
digital dataset
generation for
linear motion
experiment (a) and
obstacle with
respect to robot
pose experiment (b)

Haptic Tuning
The final set of experiments uses physical inputs to
tune hyperparameters relevant for the task. Two key
parameters are focussed upon: offset distance from
the target and preferred tool orientation. Variations
in these hyperparameters are then demonstrated
through the three cases shown in figure 6. Deter-
mining the values for hyperparameters is achieved
entirely through MCM input. A small number of
passes moving around a given obstacle is sufficient,
although this is dependent on the complexity of the
element carried in the manipulator. In our experi-
ments an average of 4 passes aremade on 3 different
obstacle locations. Reaction zones are definedon the
basis of these passes and their associated data. This
tunes the geometric digital dataset input, and allows
for the network to train for this specific task.

CONCLUSIONS
In this research we propose a new experimental mo-
tion planning method for cobots. Haptic Learning
utilises Neural Networks coupledwith a combination
of digital data generation as well as haptic recording
for the compiling of the training dataset. This com-
bination allows for the generalisation of data gained
via haptic training to different conditions. We report

the parameters necessary for the development of the
training within Grasshopper programming environ-
ment, and the results of initial experiments.

The method we introduce reduces the burden
of programming, and enables faster adaptation as
the NN is able to predict new paths faster than they
could be modelled. This is important for environ-
ments where configurations or deployments of ob-
stacles are not fully known a-priori. It represents a
low barrier of entry to generate new task specific
avoidance routines - only the manual guiding of the
robot around an obstacle is required. The method is
fully integrated within the design environment and
parametric programming workflows, and operates
with a precision suitable for many architectural as-
sembly or creative collaboration tasks.

Further development will improve the method
for autonomous generation of robotic complex mo-
tion path directly from the design environment,
which can be either modeled, or sensed through vi-
sion feedback. Beyond obstacle avoidance, we see
a larger role for NN in architectural robotics, particu-
larly because they give a means to respond to cus-
tomization and content variation of manufacturing
information. It allows to shift from complex explicit
calculations to approximations and predictions that
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Figure 5
Joint configuration
output of the
Neural Network
compared to the
output of the
simulation by
Robots plugin for
the linear motion
experiment (a) and
obstacle with
respect to robot
pose experiment (b)
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Figure 6
Robot adaptation
to different
hyperparameters
input through
Haptic Learning: a
different clearance
offset between left
and middle, and a
different avoidance
orientation on the
right.
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are fast and easy to achieve. They directly reduce the
problem of lag, and therefore enable creative robot
users to experiment with complex fabrication.
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