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This paper proposes a fuzzy-based approach for the automated evaluation of
spatial layout configurations. Our objective is to evaluate soft and interdependent
design qualities (such as connectedness, enclosure, spaciousness, continuity,
adjacency, etc.), to satisfy multiple and mutually inclusive criteria, and to account
for all potential and logical solutions without discarding preferable, likely or
even less likely possible solutions. Using fuzzyTECH, a fuzzy logic software
development tool, we devise all possible spatial relation inputs affecting physical
and non-physical outputs for a given space using descriptive rule blocks. We
implement this fuzzy logic system on an existing residential space to evaluate
different layout alternatives. We define all linguistic input variables, output
variables, and fuzzy sets, and present space-space relations using membership
functions. We use the resulting database of fuzzy agents to evaluate the design of
the existing residential spaces.
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INTRODUCTION
Several approaches have been proposed for evalu-
ating and generating spatial layout configurations,
including graph theory, quadratic assignment prob-
lems, slicing tree, space filling curves, genetic al-
gorithms, and evolutionary approaches (Dunker et
al., 2003; El-Baz, 2004; Aiello et al., 2012; Buscher
et al., 2012). Heuristic methods to address space
layout planning problems and allocation of objects
within spatial configurations have been developed
within several engineering disciplines and include
greedy algorithms, branch and bound methods,
dynamic programming, and single-solution meta-
heuristic methods such as tabu search (Ahuja et al.

2000; Xie and Sahinidis, 2008; Abdinnour-Helm &
Hadley 2000; Merrell et al., 2011; Yu et al., 2011; Ab-
delmohsen et al., 2017).

These approaches mostly involved comput-
ing distances between spatial configurations us-
ing graph algorithms and genetic algorithms, the
hierarchical organization of layout elements, and
multi-level space allocation using hybrid evolution-
ary techniques. Qualitative aspects of spatial con-
figurations, however, related to ambiguities of space
use and occupational behavior, ill-defined layout
design and spatial uncertainty remain relatively un-
addressed. Fuzzy logic systems have recently been
proposed to address ambiguity in architectural de-
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sign approaches and requirements, and specifically
in managing uncertainty and soft qualities in spatial
layout design (Ciftcioglu & Durmisevic, 2001; Çek-
mis, 2014; Çekmis, 2016). Most of these proposals
attempted to address spatial layout design from an
occupancy-centered perspective, where possibilities
of occupancy are identified in ambiguously defined
spaces or usage patterns, especially in open plan
designs.

This paper proposes a fuzzy-based approach for
the automated evaluation of spatial layout configu-
rations by conducting an analysis of spatial param-
eters and identifying the nature of spatial relations
using fuzzy logic. Our heuristic approach involves
analyzing spatial characteristics and space-space re-
lations to assess soft qualities such as connected-
ness, spaciousness, convenience of access, continu-
ity, adjacency, etc. for a given layout scheme. We
identify rulesets for logical configurations based on
these relations. We put forward that the resulting
range of possible configurations satisfy an intuitive
process without the need for an exhaustive search
through all possible solutions, but simultaneously in-
clude partially true assumptions and solutions that
reflect how architects would perceive given spatial
configurations based on intuitive logic.

SPATIAL RELATIONS AND FUZZY LOGIC
Traditional scenarios of space layout planning in-
volve defining preset holistic notions of relations be-
tween spaces that dictate their adjacency and con-
figuration logic. For example, a “strong” or “weak” re-
lationship between two spaces is roughly defined in
conventional spatial relation matrix diagrams based
on universal understandings of connectivity, adja-
cency, proximity and visibility. These relationships
are typically defined generically and may discard (a)
a wide spectrum of parameters and variables that af-
fect spatial relations, (b) detailed relations between
input spatial parameters and spatial relation outputs,
and (c) the inclusionof partially true solutions for spa-
tial configurations.

In this context, our approach deals with soft

computing methodologies (Ciftcioglu & Durmisevic,
2001; Bittermann, 2009). Rather than well defined
design issues, our approach is more concerned with
(a) the understanding and evaluation of soft and
highly interdependent aspects of design, (b) the sat-
isfaction of multiple and mutually inclusive criteria
simultaneously including functional, aesthetic, envi-
ronmental, and spatial issues, and (c) the considera-
tion of both technical and non-technical aspects of
design, such as visibility, intimacy, adjacency, con-
nectedness, enclosure, spaciousness and accessibil-
ity, (d) accounting for all potential and logical design
solutions and alternatives that encompass a wide va-
riety of parameters, without discarding preferable,
likely or even less likely possible solutions.

Fuzzy logic approaches are based, as opposed to
classical two-valued logic that assumes only true or
false propositions, on propositions that may be both
partially true and partially false (Figure 1).

Figure 1
Difference between
classical and fuzzy
spatial relation
input variables
(Top: Classical set,
Bottom: Spatial
relation input
variables using
fuzzy curves)
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The classical set demonstrates one and only truth
value for a finite number of logical variables. In fuzzy
logic however, input variables are passed into the
fuzzy logic system as a fuzzy variable, presented as
a vector of membership degrees, as they stem origi-
nally fromaqualitativeor linguistic source. TheX-axis
represents alternatives of the factor under study; for
example, proximity, while the Y-axis represents the
fuzzy degree which lies between 0 and 1. For exam-
ple, point a in the figure represents the highest de-
sired value of the fuzzy curve, while (0,0) and (10,0)
represent the lowest. All other points represent val-
ues that are desired and not desired at the same time
with varying degrees (e.g. point b in the figure lies
on the curvewhere the value is 50%desired and 50%
undesired simultaneously).

APPROACH
We propose a fuzzy logic approach whereby spatial
inputs (e.g. space area, spaceproportion, viewing an-
gles, sum of openings per space, etc.) that affect spe-
cific outputs (e.g. adjacency, spaciousness, connect-
edness, etc.) are identified for a given space. Based
on the fuzzy curves for each of the input variables,
we devise a rule block which comprises the control
strategy of the fuzzy logic system and linguistically
defines the relation between inputs and outputs as
if-then equations. These equations describe the sit-
uation for which the rules are designed and the re-
sponse of the fuzzy system for that specific situation,
as shown in Figure 2. Consequently, a finite yet ex-
tensive set of specific relations can be identified for
each of the descriptive outputs that contribute to the
evaluation of physical and non-physical attributes of
a given space. Using fuzzyTECH, a software develop-
ment tool for fuzzy logic and neural-fuzzy solutions,
we devise all possible spatial relation inputs affecting
physical and non-physical outputs for a given space
using descriptive rule blocks, describing the fuzzifi-
cation and defuzzification processes. As a case study,
we implement this fuzzy logic system on an existing
residential space to evaluate spatial layout configura-
tion alternatives. We define some space-space rela-

tions and present these relations using fuzzy curves.
We define all linguistic input variables, output vari-
ables, and fuzzy sets (e.g. high, medium, low).

Figure 2
Example of using
fuzzy rules in
controlling the
relation between
spatial inputs and
output By specifying the influence of input variables on the

output variable (Figure 3), the rule blockwizard in the
software uses this data to determine the necessary
rulesets in (If-Then) equation format. We use the re-
sulting database of fuzzy agents to evaluate the de-
sign of the existing residential building.

Figure 3
The influence of a
spatial relation
input variable on an
output variable

In the sections below, we introduce operational def-
initions and notations for space entities, and a de-
tailed account of the proposed spatial relation inputs
and outputs, and the fuzzy logic inference flow from
input variables to output variables using rule blocks
containing the linguistic control rules.

Definition of Space Entities
In order to introduce the spatial relation inputs and
outputs, we present first some basic definitions and
notations for spatial entities and their variableswhich
are seen to informspace-space relations in the fuzzifi-
cation and defuzzification process. For a given space
(Sn), we identified the following sets of entities and
their notations, as shown in Figure 4:

Set 1: SpaceDimensions andBoundaries: This in-
cludes basic “SpaceDimensions” (X_Sn, Y_Sn), “Space
Area” (A_Sn), “Center of Space” (C_Sn), “Corner Point
of Space” (CRn_Sn), “SpaceWall” (Wn_Sn), “FreeWall”
(or external wall) (FWn_Sn), and “Viewing Angle from
Center of Space” towards the exterior (CAn_Sn).

Design - ARTIFICIAL INTELLIGENCE - Volume 2 - eCAADe 37 / SIGraDi 23 | 37



Figure 4
Definition of space
entities

Set 2: Door Openings and Relations: This includes
“Door Opening of Space” (SnDn), “Door Opening
Points” (Pn_SnDn) denoting the start and end points
for agivendooropening, “DoorOpeningCenter” (C_-
SnDn), “Door Wall Part” (WPn_SnDn) which denotes
the remainingwall segment in a doorwall, and “Door

Visible Area” (VA_SnDn) which denotes the area in
space visible through a given door opening.

Set 3: Window Openings and Relations: This
includes “Window Opening of Space” (SnOn), “Win-
dow Opening Points” (Pn_SnOn) denoting the start
and end points for a given window opening, “Win-
dow Opening Center” (C_SnOn), “Window Wall Part”
(WPn_SnOn) which denotes the remaining wall seg-
ment in a window wall, and “Window Visible Area”
(VA_SnOn) which denotes the area in space visible
through a given window opening.

Spatial Inputs
Based on the space entity definitions above, we de-
veloped 16 linguistic variables for spatial inputs and
their fuzzy sets and membership functions to initi-
ate the fuzzification process. Different combinations
of these inputs formulate rule blocks for defining a
variety of spatial outputs for any given spatial lay-
out configuration. Table 1 illustrates the codes devel-
oped for these inputs, their basic definition, calcula-
tion method, unit, and fuzzy sets or descriptors.

The spatial inputs IN01_Area_Sn, IN02_Propor-
tion, and IN03_Number_FWn compute the area, pro-
portion of space dimensions, and number of free
walls per space respectively. Inputs IN04_Length_-
SnDn and IN05_Ratio_SnDn compute the length of a
given door opening and its percentage in relation to
wall lengths per space. Inputs IN06_Sum_SnOn and
IN07_Ratio_SnOn compute the total window open-
ing lengths and their percentage in relation to to-
tal wall lengths per space. Inputs IN08_Ratio_VA_-
SnDn and IN09_Ratio_VA_SnOn compute the ratio of
door and window visible area per space respectively,
whereas IN10_Sum_CAn_Sn computes the total an-
gle of viewing from the center of a given space.

Inputs IN11_Length_CenterToDoorVector and
IN12_Angle_CenterToDoorVector compute the dis-
tances and angles of the internal space vectors
from center of space to door, while inputs IN13_-
Length_SpaceToSpaceVector and IN14_Angle_Space-
ToSpaceVector compute the distances and angles
of the external vectors from space door to space
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Table 1
Variables of spatial
inputs

door. Inputs IN15_Length_SRN and IN16_Length_-
SRF compute averages of the distances between the
two nearest and farthest vectors between spaces,
calculated from space corner points.

For each of the linguistic variables, we identified
a set of descriptors or fuzzy sets (for example: low,
medium, and high descriptors for space area; narrow,
regular, andwide descriptors for door lengths; squar-
ish, rectangular, and linear configuration descriptors
for space proportion, etc.). Each of these descrip-
tors describes the spatial input more or less well de-
pending on the computed measurement or dimen-
sion. Each descriptor is defined by a membership
function which highlights the associated degree of
membershipof the linguistic term for anyvalueof the
spatial input variable. The membership functions of
all descriptors for one linguistic variable are typically
shown in one collective graph. The graph in Figure
5 plots the membership functions of the descriptors
for the variable IN02_Proportion, and Table 2 displays
the definition points for each of the descriptors.

Figure 5
Membership
function graph for
spatial input
“IN02_Proportion”

Table 2
Definition points of
membership
function for spatial
input
“IN02_Proportion”

Spatial Outputs
We identified 10 linguistic variables for spatial out-
puts and their fuzzy sets and membership functions
for the defuzzification process. Table 3 illustrates the
codes developed for these outputs, their basic defi-
nition, unit, and fuzzy sets or descriptors. The 10 lin-
guistic variables target primarily two sets of outputs:
1) outputs that describe individual space character-
istics, including spaciousness, openness, intimacy,
continuity, directionality, and enclosure, and 2) out-
puts that describe space-space relations, including
adjacency, visibility, convenience of access, and con-
nectedness.
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Table 3
Variables for spatial
outputs

Regarding the first set of outputs which describe
individual space characteristics, OUT01_Spacious de-
notes the degree of abundance and sufficiency of
room per space; how spacious it is. OUT02_Openness
denotes the degree of exposure of space to external
viewing and the outdoor environment. OUT03_In-
timacy denotes the degree of privacy and intimate
scale of space. OUT04_Continuity denotes the de-
gree of free and unobstructed flow within a given
space, both physically and visually. OUT05_Direction-
ality denotes the basic orientation and configuration
of space in terms of prevailing circulation and pro-
portionality. OUT06_Enclosure denotes the degree
of physical or virtual boundedness and sense of en-
closure of space. As for the second set of outputs
which describe space-space relations, OUT07_Adja-
cency indicates the degree of proximity and immedi-
acy of space connection toother neighboring spaces.
OUT08_Visibility indicates the degree of visual access
and viewing from one space to another. OUT09_-
AccessConv indicates the degree and level of conve-
nience and comfort of physical accessibility fromone
space to another. OUT10_Connectedness indicates
the degree of physical connectivity and linkage of
one space to multiple spaces.

For each of the linguistic variables of these spa-
tial outputs, we identified a set of descriptors or fuzzy
sets (e.g. low, medium, high for spaciousness; mini-
mal, partial, maximum for enclosure; poor, average,

strong for connectedness; weak, regular, strong for
visibility and adjacency, etc.). Each descriptor is de-
finedby amembership functionwhich highlights the
associated degree of membership of the linguistic
term for any value of the spatial output variable. The
graph in Figure 6 plots the membership functions of
the descriptors for the variable IN02_Proportion, and
Table 4 displays the definition points for each of the
descriptors.

Figure 6
Membership
function graph for
spatial output
“OUT06_Enclosure”

Table 4
Definition points of
membership
function for spatial
output
“OUT06_Enclosure”Rule Blocks

We identified 10 rule blocks for the proposed fuzzy
logic system, whereby different combinations of spa-
tial inputs contribute to the degree of satisfaction
of a given spatial output. For example, for Rule
Block 09 (RB09_AccessConv), as shown in Figure 7,
if the descriptor for the input ”IN13_Length_Space-
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ToSpaceVector“, which describes the length of the
vector between the door centers for any two given
spaces, is ”Near“, and the descriptor for the input
”IN14_Angle_SpaceToSpaceVector“, which describes
the angle of that vector, is ”Direct“, then the descrip-
tor for the output ”OUT09_AccessConv“, which de-
scribes the degree of physical accessibility between
those two spaces, is ”High“. By contrast, if the descrip-
tor for the input ”IN13_Length_SpaceToSpaceVector“
is ”Far“, and that of the input ”IN14_Angle_Space-
ToSpaceVector“ is ”Indirect“, then the descriptor for
the output ”OUT09_AccessConv“ is ”Low”.

These are however not the only two possible
combinations indicating a comprehensive evalua-
tion of the degree of physical accessibility between
those two spaces. Other possibilities include com-
binations of “Near”, “Regular” and “Far” fuzzy sets
or descriptors for the first spatial input and “Direct”
and “Indirect” fuzzy sets for the second spatial in-
put, which yield varying results for the “AccessConve-
nience” output, including “High”, “Medium” or “Low”
degrees.

For this specific rule block, 2 spatial inputs
(IN13_Length_SpaceToSpaceVector and IN14_Angle_-
SpaceToSpaceVector) were identified for 1 spatial out-
put (OUT09_AccessConv), with 6 rules describing the
different conditions for evaluating the degree of ac-
cess convenience. This typically varies for each rule
block, depending on the number of involved spatial
inputs, number and nature of descriptors, and the
underlying rule controlling the relation between the
spatial input(s) and spatial output.

The overall structure of the fuzzy logic system
in its entirety is composed of 16 input variables, 10
output variables, 10 rule blocks that control the re-
lations between spatial input and output variables,
2343 rules, and 79 membership functions. Figure 8
illustrates the overall structure of the proposed fuzzy
logic system, and how the combinations of different
spatial inputs formulate the final 10 spatial outputs
using the developed rule blocks.

Figure 7
RB09_AccessConv:
Rule block for
controlling the
relation between
inputs 13 &14 and
Output 09

Figure 8
Overall structure of
proposed fuzzy
logic system
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CASE STUDY
We introduce two cases that involve two residential
spaces in close proximity and are connected through
a circulation space, as shown in Figure 9. The two
cases vary slightly in terms of their geometric config-
uration, area, space proportion, and door-to-door lo-
cation. For each of the cases, we identified the basic
space entity definitions (following the definitions de-
veloped earlier in Figure 4), including space area, ra-
tio, center of space, corners of space, number of free
walls, door opening length, door wall part length,
door opening center, door opening points, window
opening length, window wall part length, window
opening center, window opening points, door visi-
ble area, space 01 center to space 02 center relations
(including 3 vector lengths and angles), viewing an-
gles from the centers of both spaces, and the spa-
tial network relations between the two spaces com-
puted from their corners, including the nearest vec-
tors (SRN) and farthest vectors (SRF).

Figure 9
Case study
involving two
spatial
configuration cases

To initiate the fuzzification process, we computed
all 16 spatial input parameters for both cases using

Grasshopper, including space area and proportion,
number of free walls, length and ratio of door open-
ings, sum and ratio of window openings, ratio of
door andwindow visible area, sum of viewing angles
fromcenters of both spaces, internal andexternal dis-
tances and angles of space-space vectors, and the av-
erage lengths of the nearest and farthest vectors be-
tween both spaces, computed from their corners. Ta-
ble 5 shows the computedvalues for spatial inputs for
both cases.

Table 5
Computed values
for spatial inputs for
the two residential
cases (fuzzification)

Using the fuzzyTECH fuzzy logic software, we used
the developed rule block logic to translate the dif-
ferent spatial inputs and their fuzzy sets into the 10
spatial outputs, thereby resulting in an automated
evaluation of the degrees of spaciousness, openness,
intimacy, continuity, directionality, enclosure, adja-
cency, visibility, convenience of access, and connect-
edness for both cases, as shown in Table 6.

The results of the automated evaluation of the
two spatial configuration cases demonstrate inter-
esting findings. As shown in the table, subtle varia-
tions in the shape geometry of the two spaces can
result in large discrepancies in the output variables.
For example, the degree of visibility for case 1 was
recorded at 93%, as opposed to 7% in case 2. Trac-
ing this output back to its spatial input constituents,
two main spatial inputs are shown to affect the de-
gree of visibility: (1) IN04_Length_DoorOpenings and
(2) IN08_Ratio_DoorVisibleArea. While thedooropen-
ing length remains the same in both cases (at 1.10m),
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the computed value for the door visible areawas 0.84
for case 1 and 0.07 for case 2.

Table 6
Results of
automated
evaluation of
spatial outputs
(defuzzification)

Other revealing findings are related to the interesting
dichotomies that can be deduced from such a result
for the two cases, for example the degree of open-
ness (50% - 16%) versus the degree of enclosure (50%
- 50%), the degree of spaciousness (36% - 53%) ver-
sus the degree of intimacy (52% - 50%), the degree of
continuity (63% -87%)versus thedegreeofdirection-
ality (31% - 56%), the degree of spaciousness (36% -
53%) versus the degree of openness (50% - 16%). On
the other hand, some values are in close correlation,
such as the degree of convenience of access (88% -
37%), the degree of adjacency (82% - 36%), and the
degree of connectedness (88% - 40%). These results,
involving both the seemingly contradicting and the
correlating, only corroborate the assumption of this
research, where spatial relations cannot be evaluated

in their totality asmerely “strong” or “weak” relations,
but are rather far more nuanced and involve a wide
rangeof attributes that aremore telling about thena-
ture of spatial relations and configuration logic.

DISCUSSION AND FUTUREWORK
This paper introduced a fuzzy logic system for the au-
tomated evaluation of soft qualities of spatial con-
figurations, including individual space characteristics
and space-space relations. The findings of the paper
confirm the initial assumption related to spatial am-
biguity and uncertainty, where conventional spatial
relation matrix diagrams tend to describe those re-
lations in a holistic fashion as “strong” or “weak” re-
lations, while discarding many of the nuances asso-
ciated with soft qualities of space, such as spacious-
ness, intimacy, openness, enclosure, connectedness,
etc. The paper attempted to evaluate these qualities
by providing a detailed account of space entity def-
initions, calculation methods for spatial inputs, and
devising rule blocks to address spatial outputs that
take into account complex combinations of these
spatial inputs and their fuzzy sets or descriptors.

The findings of this paper only open the door for
extensive research in several areas pertaining to the
automated evaluation of spatial configurations. One
of the limitations of this research pertains to building
typology. The discussed cases were relatively simple
and arbitrary residential spaces. Other building ty-
pologies and spaces have their complexities and will
affect the nature and understanding of the described
outputs and rule blocks, and hence the nature of the
evaluation process itself. Scale is also a significant
factor and potential. The relations described in this
paper, although demonstrated in the context of two
simple residential rooms, can be applied in principle
to different scales, levels of detail, and relations, in-
cluding but not limited to furniture layout schemes
in different spatial typologies, departmental spaces
and zones, vertically stacked spaces in building con-
figurations, urban neighborhoods and clusters, etc.
This opens the door for studying a larger and more
complex set of relations than only space-space re-
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lations, but also involves space-object and object-
object relations, and for evaluating alternative de-
sign schemes at different levels of detail, ranging in
essence from rooms to cities.

Another significant and influential limitationper-
tains to relying solely on two-dimensional spatial
configurations. Incorporating 3-dimensional and
volumetric data for space layout configurations will
definitely extend to include a larger dataset and be-
come more inclusive and accurate when it comes to
describe soft qualities such as spaciousness, enclo-
sure, visibility, and the like. Further work is needs
in this area to enhance the fuzzification process for
inclusion of such dimensions. The studied geome-
tries in this paper were also of average complexity,
involving simple and primitive geometrical shapes,
and basic orthogonal configurations. Geometrical
complexity is yet another factor thatwill need further
research, andwill help refine and revisit the space en-
tity definitions developed in this paper.

This paper has also focused in principle on phys-
ical qualities of space and relatively quantifiable at-
tributes that can be tangibly reduced to geometrical
entities. More research should focus on non-physical
attributes, or non-physical components in the evalu-
ation of soft qualities in space layout configurations,
wherenotions suchasperceptionandexperiencebe-
come incorporated into the understanding of seem-
ingly mere physical qualities such as visibility, open-
ness, continuity, intimacy, etc. Other dimensions
such as light, material, texture, color, and the incor-
poration of environmental aspects should contribute
to such an area of research.

As a long-term goal, findings from this research
and future studies should eventually address gener-
ative aspects of design, where results of evaluating
spatial layouts should inform architects with a more
inclusive design process that includes partially true
assumptions and solutions based on intuitive logic.
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