
Refurb!
A tool allowing for iterative refurbishment

Gabriel Wurzer1, Ugo Maria Coraglia2
1TU Wien 2Sapienza University of Rome
1gabriel.wurzer@tuwien.ac.at 2ugomaria.coraglia@uniroma1.it

Refurbishments and adaptations to existing building structures can be a
challenging problem: Keeping track of all building measures (e.g. what walls,
doors and installations to add or remove) is equally demanding as trying to keep
an eye on the constraints (e.g. natural lighting) and functions that the changed
structure will provide. It also demands a integrated view of the redesign (spatial
aspect) and the refurbishment as a project (time aspect). To this end, we have
been developing our planning tool ``Refurb!'', which lets a user plan
refurbishments and adaptations to existing structures using a mixed metaphor of
``CAD-tool + project plan'', including a variety of analysis tools to compare the
original state of a structure to the planned one (e.g. adjacency and circulation
before and after adaptation). The tool is aimed at project planners and ranges
from small scenarios (e.g. relocation/adaptation/refurbishment of a department)
to big scenarios (e.g. relocation when bringing a hospital into service).

Keywords: Refurbishment, Planning Tool, Cellular Automaton

INTRODUCTION
There are many buildings that are built using a regu-
lar beam structure and thus allow for easy reassign-
ment of interior walls. In principle this would allow
for rapid reallocation of rooms by means of merg-
ing, splitting, enlargement or decrease in area; how-
ever, this is not as simple, since roomsare constrained
both in terms of adjacencies to other rooms as well
as through their required installations (e.g. water,
electricity) or cannot be relocated at all (e.g. stairs).
Another wish is that relocated rooms have more or
less the same amount of windows, natural lighting
and other qualities that define the “feeling” of that
space. Even for a moderately-sized building, there
are so many combinations of these factors that the

relocation problem is cannot be solved easily with a
manual approach, but it is also hard to represent and
work on digitally.

In our work, we have reformulated this problem
into a simplified model in which we can describe
refurbishments as a sequence of operations acting
on interior walls (create/delete) and thereby also
on rooms (merge/split/enlarge/shrink) which we are
also able to relocate. The succession of operations
mimics a project plan for a refurbishment project,
where the order of activities is equally important
to their implementation (Coraglia and Wurzer 2017).
Apart from being able to enter operations in our tool
‘Refurb’, we also check whether all required installa-
tions and previous qualities still present, so that the

Design - ARTIFICIAL INTELLIGENCE - Volume 2 - eCAADe 37 / SIGraDi 23 | 55



“feeling” is more or less the same in the new or mod-
ified space. The tool furthermore looks at changes
in adjacency relations amongst the rooms, in order
to inform over changed reachability and walking dis-
tances. The user then can go visually through the
changes, thereby being able to see how the refur-
bishment project will evolve.

APPROACH
Weuse a grid representation (i.e. Cellular Automaton
[CA], see figure 1) inwhich each room (defined by the
properties editable [yes/no], functions [list], needed
installations [list]) is composed of a set of cells having
a certain type (door, window, [interior/exterior] wall,
floor, circulation); additional properties within each
cell signify the presence of installations (e.g. water
line) and quantities (e.g. natural illumination). In that
representation, we are now able to remove or add in-
terior walls, which in turn creates, deletes, extends,
shrinks, splits or merges rooms.

Figure 1
Imported “floor
plan” showing
different cell types

Topological queries on the grid representation be-
fore and after the change now allow us to build up
an adjacency graph A and A‘, where each room is
represented by a node, connections between rooms
(shared door!) as edges, and node properties char-
acterize the room (function, area, number of win-

dows and doors, presence of installations, average
quantities such as illumination, boolean flag signify-
ing whether the room is relocatable). Comparing A
with A’ allows us to visualize the change in a room’s
properties and highlight problematic implications of
that change (e.g. no entrance, no windows, needed
installation not present, changed adjacency or reach-
ability).

Apart from being able to edit, create or delete
room definitions, we also want to be able to swap or
duplicate rooms easily; we thus offer copy, cut and
paste operations using a infinite clipboard; pasting
can either (a.) be conducted in an “empty” room
or (b.) using an already-occupied room as a target;
the latter allows for merging of functions and re-
quired installations. Further editing options are for
adding/deleting installations, windows, doors in the
cell representation, as well as toggling the floor type
between circulation and regular floor.

The sequence of operations forms is linear, how-
ever, the changes made are not: We are able to vi-
sualize the merging/splitting and so forth that result
from these separately, in a fashion used by version-
ing systems (versioning tree). Evaluating that tree at
the branches (i.e. final stage after all refurbishments
weremade) and tracingback to theoriginal roomcan
be used to give a change history - i.e. “where has this
room evolve from”.

CASE STUDY IMPLEMENTATION
The approach has been implemented as a NetLogo
program in order to test it in practical terms. As case
study, we have drawn one floor of our university de-
partment as color-coded bitmap (1 pixel = � m², col-
ors correspond to different cell types) which we im-
ported into NetLogo’s CA (i.e. grid). We did not at-
tempt to include multiple floors at this time, facilitat-
ing this would mean using a different version of Net-
logo (i.e. NetLogo 3D) and also having to extend our
method beyond the concepts described herein (e.g.
roommust stay on same floor).

Querying the grid is an easy task in NetLogo,
since its language (Logo) is functional and thusallows

56 | eCAADe 37 / SIGraDi 23 - Design - ARTIFICIAL INTELLIGENCE - Volume 2



for easy selection of cells based on color (=type) and
inscribed properties. A typical algorithm we use to
determine the cells belonging to every room is the
Flood Fill algorithm which is given in Algorithm 1.

Algorithm 1 – Flood Fill(cell, id)
if (cell is floor or circulation) and
↪→ (cell.id is undefined):

cell.id = {id}
for each neighbor of cell:

Flood Fill(neighbor , id)

Flood Fill determines the floor cells of a room, given
that one starts at a certain cell inside this room. It is
usedbya labelingprocedure (Algorithm2)whose job
is to identify all different rooms in a cellular floor plan.
This is done by giving each cell an id property, which
is a list containing the room number(s) it belongs to.

Algorithm 2 – Label Rooms
id = 1
while any cells without id of type
↪→ floor or circulation:

Flood Fill(one of these cells, id)
floor = cells with cell.id being
↪→ id

if any? cells of type circulation
↪→ in floor:

set all floor cells type to
↪→ circulation

boundary cells = {}
for each cell in floor:

adjacent cells = neighbors of
↪→ cell with neighbor.id not
↪→ cell.id

for each neighbor in adjacent
↪→ cells:

neighbor.id � {id}
boundary cells � adjacent cells

increase id

The results of our analysis are visualized in figure 2,
which also gives a depiction of natural lighting (ray-
tracing from the windows, lighter cells are more illu-
minated than darker ones).

Figure 2

After analyzing the CA for identifying the different
rooms, we can build up a graph in which each node
stands for a room (see again the circles in figure
2). The representation of this graph is visual - we
use NetLogo nodes (“turtles”) that can be positioned
freely on top of the CA. Since every room knows its
boundaries, we can check for shareddoorswithother
rooms. Out of this analysis we can insert adjacencies
(=edges [“links”] between two nodes; see again lines
in figure 2) into the graph.

Operations on the cellular automaton (typically:
changingwalls, assigning a different cell type) are en-
tered visually in the CA, other (non-visualizable) edits
are done in a dialogue-driven fashion for each room.
In the background we need to not know what con-
stitutes a meaningful “operation” - for example cut-
ting, pasting but not copying to the clipboard - so
we can add it to the list of operations which behaves
like an edit history. Figure 3 depicts this edit history
where we attribute edits with “minor” and “major”,
and group these into different “edit phases” called
changesets. In short, edits are not “major” if they do
not lead to a split or merge in rooms, or the attri-
bution of different functions or needed installations
that are the basis for the programme checker that is
given in figure 4.

Design - ARTIFICIAL INTELLIGENCE - Volume 2 - eCAADe 37 / SIGraDi 23 | 57



Figure 3
Version history:
Depicts different
edits (major or
minor) done to the
initial design;
grouped into
changesets.

Figure 4
Revision checker:
Analyzes the
current design
according to the
needed functions,
illuminations,
available
adjacencies and
reachability of
other areas.

Through analysis of the list of operations, we can
build the said adjacency graphs A and A’ (see again
’Approach’) out of each pair (successor, predecessor)
in that list. The comparison between both is done
with reference to the CA, so that we can find out that
there was a split or merge in the room structure; we
record this in the versioning treewhich can be visual-
ized using again NetLogo’s nodes and edges. By trac-
ing the leaves back to the tree root, one can obtain a
version history for a certain room (see again circles
and lines in figure 2 for the graph; figure 3 for the ver-
sion history; figure 4 for the analysis of the current re-
vision).

In further analysis, one can compare a changed
design (figure 5) to baseline. This can either be the
initial design or the design in the current change-
set (think: design in the current project phase). We
can get added, removed and unchanged {adjacen-
cies, functions, pathways to rooms} as well as a net-
work analysis relative as to what that means (e.g. the
closeness centrality, deptictedby the sizeof the room
nodes in figure 5 and also logged as output of the
analysis console in figure 6. All in all, the planner is
informed over the implications of the changes at ev-
ery step of the design.

DISCUSSION & FUTUREWORK
The main contribution and technique of our ap-
proach lies in the ability to enter refurbishments in
a step-by-step manner, which helps to visualize the
progression of the refurbishment work and can be
used for drafting an initial project plan. Our approach
is useful when being constrained to local changes
rather than having the opportunity to relocate rooms
globally; if this is possible we would rather recom-
mend to use an automated floor planning method
(e.g. using K-d trees and Evolutionary algorithms
[Knecht and König 2010]). However, the goals of
the latter are rather different than ours: Automated
floor planningmethods want to achieve a global op-
timum, we just want a method that allows for local
refurbishment with the least amount of changes to
the current floor plan, without considering optimiza-
tion.

58 | eCAADe 37 / SIGraDi 23 - Design - ARTIFICIAL INTELLIGENCE - Volume 2



Figure 5
Changed design
showing relative
importance
[closeness
centrality] of rooms
as size of room
nodes, adjacencies
[dashed] and
reachability [solid]
edges between
these.

Figure 6
Comparison of
current design
based on either
initial design or
base design for
current changeset

When it comes to future work, there many options
that are on the table:

• The current graph measures used for analysis
are based on added/removed or unchanged
rooms. We investigate adajencies and the cir-
culation graph (what room is reachable from
another room, change in path lengths and so
forth). However, as was shown in (Wurzer and
Lorenz 2016), manymore graph analysis mea-
sures are possible, such as clustering the re-
sulting rooms and showing “public/private”
spaces by means of centrality. Likewise, the
“public/private” quality might also be a func-
tion of people crossing these spaces, which
demands a process/occupancymodel such as
the one given by (Tabak 2009) or, more re-
cently, by (Simeone et al. 2012).

• Clearly, the current implementation could
benefit from not only editing the design, but
outputting the project plan (a task which is
easily done since we record every change
that acts on the initial design, grouped
into “changesets” = project phases and dis-
tinguished by “minor” or “major” edits =
work packages or sub-packages). Such an
approach has already been carried out in
(Wurzer et al. 2019) and was thus not imple-
mented in the showcase tool.

CONCLUSIONS
We have presented an approach for iterative refur-
bishment, using a grid representation of a floor plan
as input, transforming that into a adjacency graph
made out of rooms (nodes) and physical connections
between these (edges). Refurbishments then be-
come a sequence of operations which change the
adjacency graph, creating, merging, splitting, en-
larging, shrinking or deleting rooms or creating or
deleting connections between them. A visualiza-
tion/checking algorithm kicks in after each opera-
tion, informing the user of problems and visualizing
changes. Because of this iterative nature of our ap-

Design - ARTIFICIAL INTELLIGENCE - Volume 2 - eCAADe 37 / SIGraDi 23 | 59



proach, we can also visualize the progression of the
refurbishment as a preliminary “project plan”, which
canhelpdealwith the implications of refurbishments
at different stages of a refurbishmentproject. The ap-
proach is best-suited for cases inwhichmodifications
to the existing building layout are to be made locally
with minimal change to the existing layout rather
than globally, in which case we would rather recom-
mend to use an automated floor planning method
which gives optimal results.

REFERENCES
Coraglia, UM and Wurzer, G 2017 ’CONVIS: A tool en-

abling uninterrupted operation during refurbish-
ments of complex buildings’, Proceedings of SIGraDi
2017, Concepcion (Chile), pp. 376-380

Knecht, K and König, R 2010 ’Generating Floor Plan Lay-
outs with K-d Trees and Evolutionary Algorithms’,
GA2010 - 13th Generative Art Conference, Politecnico
di Milano University, Italy, pp. 238-253

Simeone, D, Kalay, Y, Schaumann, D and Hong, SW
2012 ’An Event-Based Model to simulate human
behaviour in built environments’, Proceedings of
eCAADe 2012, pp. 525-532

Tabak, V 2009, User simulation of space utilisation : sys-
tem for officebuilding usage simulation, Ph.D. Thesis,
TU Eindhoven

Wurzer, G, Coraglia, UM, Pont, U, Weber, C, Lorenz, WE
and Mahdavi, A 2019 ’A Cell-Based Method to Sup-
portHospital Refurbishment’, Proceedingsof the12th
Envibuild – Buildings and Environment – From Re-
search to Application, pp. 553-560

Wurzer, G and Lorenz, WE 2016 ’SpaceBook: A Case
Study of Social Network Analysis in Adjacency
Graphs’, Proceedings of eCAADe 2016, Oulu, Finland,
pp. 229 - 238

60 | eCAADe 37 / SIGraDi 23 - Design - ARTIFICIAL INTELLIGENCE - Volume 2


