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Nowadays, there is a widespread awareness towards environmental issues. This
is already visible in architecture by the increasing number of analysis tools that
evaluate different performance criteria. However, the application of these tools is
usually restricted to the final design stages, conditioning the implementation of
design changes. Performance-Based Design (PBD) is an approach that addresses
this limitation. Through PBD, architects integrate analysis tools since early
design stages to make informed decisions regarding the performance of their
designs. Since the success of PBD highly depends on the number of evaluations
that can be performed, these approaches usually end up benefiting from
Parametric Models (PMs), which facilitate the generation of a wide range of
design variations, by simply changing the values of the parameters. Furthermore,
in order to more efficiently achieve a PBD approach, architects can take
advantage of the combination between PMs, analysis tools, and optimization
processes. In this paper, we explore this combination to optimize an exhibition
space regarding its daylight performance and the material cost of the new
elements intended for that space.
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INTRODUCTION
Nowadays, more than ever, there is an increasing
awareness regarding the impact of human activities
on the planet. Consequentially, the interest in sus-
tainability is also raising. In the architectural field,
this interest is visible in the paradigm shift towards a
more environmentally-friendly design process based
on building performance (Kolarevic 2005). To sup-
port this paradigmshift, newandmoreaccurate tools

have been developed to help architects evaluate dif-
ferent performance aspects and, thus, making more
informed decisions regarding their designs (Oxman
and Oxman 2014).

Nevertheless, architects usually do not take ad-
vantage of the full potential of these tools, as they
only use them at final design stages, where the build-
ing shape is already defined and design changes are
more difficult and tedious to do (Méndez Echenagu-
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cia et al. 2015; Anderson 2014). This results in either
small-scale design changes, which have a low impact
in the overall design’s performance, frequently result-
ing in a building that will rely more on active sys-
tems post-construction, or larger-scale ones, which
aremore difficult and time-consuming to implement
and may possibly alter the architect’s design intent.
Therefore, to successfully create buildings with bet-
ter environmental performance, architects must in-
tegrate performance-oriented studies in early design
stages, when space, geometry, and proportion are
still being explored (Anderson 2014).

Performance-Based Design (PBD) is an approach
to design that addresses this problem. In PBD, archi-
tects consider performance as a guiding design prin-
ciple and, thus, use analysis tools fromanearly design
stage. As a result, decisions regarding building per-
formance are more informed, ensuring that the final
building design is an improved version of the archi-
tect’s initial design intent.

In order to use PDB, it is necessary to evaluate al-
ternative designs. To help generate these designs, a
recent design approach was proposed: Algorithmic
Design (AD), which can be defined as the formulation
of designs through an algorithmic description. AD
allows architects to build a program that generates
the model, instead of manipulating the model’s ge-
ometry directly in a modeling tool. This means that
through the use of AD, architects have the possibility
to create Parametric Models (PMs) by defining the re-
lations between the different elements of their mod-
els and assigning parameters to it. This facilitates the
generation of different design variations by simply
changing the values given to the parameters (Wood-
bury 2010). Moreover, as the success of PBD highly
depends on the number of design evaluations per-
formed, the use of PMsbecomesquite relevant in this
context, since it allows for the easy generation of a
wide range of design variations to be then evaluated
in terms of their performance.

Still, despite their availability, existing analysis
tools usually require a specific analytical model, i.e., a
simplificationof thebuilding’smodel containingonly

the information required by the analysis tool. Un-
fortunately, the process of transferring from a CAD
or BIM model to an analytical one is not trivial. Fur-
thermore, more often than not, portability between
tools cannot be achieved, forcing the architect to re-
build the model in a format suitable to the analy-
sis tool being used (Castelo Branco and Leitão 2017).
Moreover, even in the cases where portability can be
achieved, either information losses occur during the
conversion process or the analysis tool cannot deal
with the complexity of the model’s geometry (Moon
et al. 2011). To overcome these limitations, we can
follow a design strategy that integrates AD tools with
analysis tools, where the analytical model is gener-
ated without requiring additional work from the ar-
chitect.

ALGORITHMIC DESIGN AND ANALYSIS
Algorithmic Design and Analysis (ADA) (Aguiar et al.
2017) is an approach that takes advantage of the AD
paradigm to automate the generation of analytical
models. As a result, when a change is made in the al-
gorithmic description of the design, the correspond-
ing analytical models are updated concurrently.

Since this approach supports the automatic gen-
eration of analytical models in the format required
by the respective analysis tool, it minimizes the infor-
mation losses that typically occur during the process
of converting models between CAD/BIM and analy-
sis tools. In addition, the resulting analytical models
contain only the elements and details that are neces-
sary for the simulation tool. For example, in the case
of a lighting analysis using RADIANCE (Ward 1994), a
wall in the generic model is simply represented by a
set of surfaces.

Moreover, the ADA approach also simplifies and
speeds up the interaction between the architect and
the analysis tool, encouraging architects to under-
stand the impacts of their design choices on the
building’s performance and, accordingly, implement
performance-oriented changes early in the design
process.

Finally, ADA allows the architect to define the
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analysis features directly in the algorithmic descrip-
tion, for example, specifying the placement of the
light sensors in a lighting simulation, hence automat-
ing and, therefore, facilitating the execution of mul-
tiple analysis (Aguiar et al. 2017). Having both the
generation and the evaluation process automated
unlocks the possibility to also implement automated
optimization processes. To this end, a wide range of
optimization algorithms can be integrated into the
ADA approach to automatically seek for optimal de-
sign solutions (Belém and Leitão 2018).

MULTI-OBJECTIVE OPTIMIZATION
In the architectural context, architects rarely aim at
improving a single performance aspect (or objective)
of their designs. On the contrary, they typically ought
to address multiple objectives simultaneously, e.g.,
lighting comfort vs thermal comfort or energy con-
sumption vs thermal comfort, among others (Khazaii
2016; Nguyen et al. 2014). In this view, one of the
main goals of applyingMulti-Objective Optimization
(MOO) process in a PBD approach is to find a way to
reconcile all the existing objectives in a creative and
effective way (Kolarevic 2005).

However, problems involvingmore than one ob-
jective are difficult to optimize, particularly when the
objectives conflict with each other. Considering this,
a possible strategy is to simplify the multi-objective
problemby combining the different objectives into a
single weighted function and, then, solving the opti-
mization problem as being single-objective (Nguyen
et al. 2014). Another possible solution is to use a
Pareto Optimization approach. Instead of producing
a single optimal solution, theParetoOptimization ap-
proach produces a set of optimal solutions, in which
it is impossible to improve one of the objectiveswith-
out worsening the others. In these cases, a trade-off
between the performance goals must be made, be-
ing the final decision in thehandsof the architect, the
one responsible for choosing the solution that best
suits his design intents.

In Pareto Optimization, solutions can be classi-
fied as dominated or non-dominated. The domi-

nated solutions are the non-optimal solutions, from
which it is possible to improve one objective without
worsening the others, i.e., there is always a better so-
lution that dominates it. Conversely, non-dominated
solutions correspond to the solutions fromwhich it is
impossible to improve one objective without deteri-
orating others (Khazaii 2016; Wortmann 2017). The
set of all non-dominated solutions is known as the
Pareto Front. Depending on the number of optimiza-
tion objectives to evaluate, this front is represented
differently. As an example, in a bi-objective optimiza-
tion problem the Pareto Front often corresponds to
a line, whereas in a tri-objective problem, it is usu-
ally represented by a surface. Unfortunately, when
we havemore than three objectives, it becomes very
difficult to represent the Pareto Front.

In figure 1, we can see three different stages of
a MOO problem plot involving two objectives. One
intended to be minimized, which corresponds to the
costs and is represented in the X-axis, and other in-
tended to be maximized, which corresponds to the
daylight conditions and is represented in the Y-axis.
Figures 1.a and 1.b illustrate the optimal solutions for
eachobjective. However due to the fact that theopti-
mal solution for the cost is the worst for the daylight
performance, and vice versa, the result of a Pareto-
based approach is a set of optimal solutions repre-
senting the trade-offs between the two objectives
(figure 1.c).

METHODOLOGY
In this section, we propose a PBD methodology, that
combines the ADA approachwith an optimization al-
gorithm.

In order to optimize a design, it is necessary to
generate different design variations to be then eval-
uated regarding their performance. To this end, the
ADA approach can be used to automatically gener-
ate and evaluate a wide range of design solutions by
simply changing the values given to the parameters.
Additionally, we can further benefit from theADAap-
proach by combining it with optimization algorithms
in the search for optimal solutions. The latter attempt
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Figure 1
MOO problem with
two objectives,
where (a)
represents the best
solution for the
cost, (b) represents
the best solution for
the daylight
performance, (c)
illustrates trade-offs
between the two
objectives, resulting
in a set of optimal
solutions.

to find optimal design solutions through the sugges-
tion of values for the design’s parameters.

Figure 2 represents the proposed methodology,
which is specially tailored for addressing MOO prob-
lems.

Figure 2
Proposed workflow.

After creating the PM, the architect defines the de-
sign space he is comfortable with and establishes his
goals for the optimization process, i.e., the perfor-
mance objectives to be evaluated. Then, he chooses
a MOO algorithm. In general, these algorithms start
by selecting random solutions from the design space
to be evaluated. Then, based on the collected infor-
mation about the problem, they try to improve the
results at each design iteration, continuing this pro-

cess until the stopping criteria defined by the archi-
tect is satisfied. In the end, the solutions produced
by the optimization process can be visualized in ei-
ther a spreadsheet or a graph depending on his pref-
erences. Furthermore, the architect can visualize the
optimal solutions, from which he then chooses the
one that best suits his goals. In a MOO problem, the
final decision is always the architect’s responsibility.

CASE STUDY
To evaluate the proposed methodology, we devel-
oped a real case study: the Black Pavilion at Pimenta
Palace, in Lisbon.

The space of the Black Pavilion upon which we
focus is destined to receive temporary art exhibitions
and has a rectangular shape, being its only current
daylight source a glazed curtain-wall, occupying half
of the south façade and the entire east façade. The ar-
chitects’ intention for this space was to place a rect-
angular skylight in the opposite side of the curtain-
wall, as a way to balance the daylight entering the
space, while taking into account its material costs.
To evaluate the daylight performance, we used the
lighting analysis tool RADIANCE. Regarding the ma-
terial cost, it was calculated through an analytical
function defined by us, that considers the area of the
skylight elements and their material cost perm2.

In order to apply the proposedmethodology, we
first needed to have a PM of the project. Given that
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the architects had only provided us with a 3D model
of the pavilion in Revit, our first stepwas to create the
corresponding PM using an AD approach. Although
all the building’s elements were designed in a para-
metric way, in the end, only the skylight was con-
sidered parametric, since it is the one whose size af-
fects the building daylight performance. Moreover,
considering that we are dealing with a building in-
tended for art exhibitions, its interior space should
have diffused sunlight, instead of direct sunlight, be-
cause diffused light is softer and does not cast harsh
shadows. To this end,wedecided touse a translucent
material for both the curtain-walls and the skylight.
However, the building industry does not have stan-
dardized metrics for this kind of materials. To over-
come this problem, we defined a function for translu-
cent materials (Jacobs 2014). This function creates
a definition for these materials based only in the to-
tal transmission (diffuse and specular), assuming that
the material is a perfect Lambertian diffuser, i.e., the
specular transmittance is 0.

Daylight Requirements
To evaluate daylight performance, we considered
the Spatial Useful Daylight Illuminance (sUDI) met-
ric, which measures the percentage of area between
a defined range of illuminances, during at least 50%
of the annual occupied time (Nabil and Mardaljevic
2005; Santos et al. 2018). However, given that we
were working on an exhibition space, which requires
particular light requirements, instead of using the
predefined sUDI ranges, i.e., from 300 lux to 3000 lux,
wedecided to adopt a range thatwasmore appropri-
ate to that purpose.

According to CIE (2014), and considering thema-
terial classification for our space as low sensitivity, it
should ideally have a constant light of 200 lux. How-
ever, it is almost impossible to guarantee these val-
ues by only using natural light, reasonwhy constrain-
ing the sUDI to a very small range is not realistic. To
overcome this problem, we decided to delimit the
sUDI between 0 lux and 220 lux. Thisway, we guaran-
tee that the space does not have too much daylight,

which could damage the art pieces. Finally, we stipu-
latedour goal for thedaylight optimization: to obtain
the maximum sUDI possible, i.e., the maximum per-
centage of area between the range of 0 lux to 220 lux,
during at least 50% of the annual occupied time.

Current Conditions
Workingona real case studyhelps usnot only to eval-
uate our methodology, but it also proves how real
projects can benefit from the ADA approach. There-
fore, the first stage was to measure the original con-
ditions of the exhibition room, i.e., without the sky-
lights and considering the glazed curtain-walls. After
specifying the design parameters that produced the
design variation closest to the current building, we
evaluated it using the RADIANCE analysis tool, thus
receiving as a result the corresponding sUDI value,
which was 70%. Even though this sUDI percentage
representedanacceptable value according to theob-
jectives defined for this space, we observed situa-
tions of intolerable glare. Based on these results, it
was possible to conclude that there was room for im-
provements, which could have a substantial impact
on the overall daylight performance of the exhibition
room.

EVALUATION
Weproposed amethodology for aMOOapproach to-
wards a PBD. This approach requires the definition of
(1) a PM, (2) the variables (representing the design
parameters) and the corresponding constraints (e.g.,
upper and lower bounds of the accepted variable’s
values), (3) the optimization objectives, and (4) the
optimization algorithm.

Over the next sections, we describe the process
that led to the definition of the variables constraints,
a process known as Sensitivity Analysis (SA), the ob-
jectives and the relations between them, and the
chosen optimization algorithm. We end up by pre-
senting and discussing the results obtained.
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Sensitivity Analysis
Prior to the application of the proposed methodol-
ogy, we first decided to perform SAs to understand
the impact of the different parameters on the day-
light performance of our case study.

SA is a process through which the architect can
measure the influence each parameter has in the
overall building performance, based on the results
of multiple simulations. This allows him to identify
trends between the different variables and the simu-
lation results, therefore, discovering unexpected out-
comes regarding the influence of each variable. De-
spite not being a standard procedure in an architec-
tural optimization process, SA can be an extremely
valuable resource in helping designers understand
how and howmuch the design parameters affect the
objective function (Castillo et al. 2008).

By performing a SA prior to the MOO, we could
define with more precision the constraints for each
variable, which helped us decrease the time and
number of evaluations needed to find the optimal (or
near optimal) solutions. The variables considered in
our case study were the width, length, and height of
the skylight, as well as the translucent material ap-
plied to both the skylight and the curtain-wall. All the
materials tested were translucent panels of different
total transmissions.

In the next paragraphs, we present the variables
and the corresponding constraints that we adopted
for theMOO, based on the SAs results. Regarding the
skylight height, we noticed that higher values had
a negative impact on the sUDI values. For this rea-
son, we fixed the skylight height at 1.5 m, which cor-
responded to the minimum possible value accept-
able for this space. Concerning the width and length
variables, we observed that skylights with bigger ar-
eas resulted in higher values of sUDI. Therefore, the
ranges set for the width and length variables were
from 1.5 m to 4 m and from 6.5 m to 17.5 m, corre-
spondingly.

Finally, regarding the materials of both the
skylight and curtain-wall, we tested four different
translucent panels with the following total transmis-

sions: 15%, 25%, 45%, and 65%. Results demon-
strated that the 25% Translucent Panel and the
45% Translucent Panel positively influenced the sUDI
value of the solutions evaluated. Therefore, we de-
cided to test these two materials during the MOO,
as well as the one in between them, i.e., the 35%
Translucent Panel.

Optimization Setup
We decided to evaluate our methodology using only
twoobjectives: (1)maximize the sUDI, by considering
the range between 0 lux and 220 lux, and (2) mini-
mize the material cost of the skylight. From the re-
sults of the SA, we realized that these objectiveswere
contradictory. This means that the least expensive
skylights are those that produce the worst sUDI per-
centages, whereas themost expensive ones produce
the best sUDI percentages. Given the existing con-
flict between the objectives, we expected to obtain a
set of optimal solutions, i.e., the non-dominated so-
lutions, instead of a single optimal solution.

One other important aspect of any optimization
process is the optimization algorithm to use. In this
work, we chose a MOO genetic algorithm named
NSGA-II (Deb et al. 2002). This algorithm starts by
generating an initial set of solutions, called popula-
tion, fromwhich, at each iteration of the algorithm, a
new and improved population is created. The early
populations are frequently more diverse, whereas
the final ones are generally more similar to the fittest
individuals. In our case, for one run of the algorithm,
we specified the population size as 10 and the num-
ber of iterations as 20, generating a total of 200 candi-
date solutions for each run. We decided to run the al-
gorithm three time to assure diversity in theobtained
results. Nonetheless, in the context of a real project,
where architects usually have to deal with very tight
deadlines, they can opt tomake a single run of the al-
gorithm and increase the population size and/or the
number of iterations.

Results and Discussion
At the end of the three runs, we combined all the re-
sults obtainedandeliminated repeated solutions, i.e.,
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the solutions whose variables had the same values.
We obtained a total of 473 solutions being that 22
were non-dominated solutions. We decided to visu-
alize these results on a scatter plot where we repre-
sented the Pareto front, as well as the dominated and
non-dominated solutions. Through the visualization
of the scatter plot, wewere able to (1) quickly identify
the best solutions foundby the algorithm, (2) analyze
the diversity of all the evaluated solutions, (3) mea-
sure the extent of the algorithm search, and, finally,
(4) understand the convergence of the algorithm.

Moreover, in order to better understand how the
skylights of different solutions affect the exhibition
space, we produced two rendered images for three
solutions along the Pareto front, one during the Sum-
mer solstice and the other during theWinter solstice,
both at 12 pm. Figure 3 represents the correspon-
dence between the Pareto front solutions and the
rendered images.

As mentioned previously, we decided to use
three translucent materials with different total trans-
missions. However, none of the non-dominated so-
lutions foundby the optimization algorithmused the
45% Translucent Panel and only three used the 35%
Translucent Panel .

Regarding the other two variables, the range de-
cided for thewidth (between1.5mand4.0m)proved
to be adequate as the width of the non-dominated
solutions varied between 1.5 m and 3.8 m. Nev-
ertheless, concerning the length variable, the algo-
rithm found non-dominated solutions only for val-
ues lower than 8.9 m and the maximum value set
for the length range was 17.5 m. On the one hand,
thismaymean that there arenonon-dominated solu-
tions with a skylight length higher than 8.9 m, being
the range given to the algorithm too extensive. On
the other hand, this may denote that the optimiza-
tion algorithmdid not analyze enough solutionswith
a length higher than this one, therefore not finding
any non-dominated solutions with a skylight length
above 8.9 m. Due to the complex nature of an ar-
chitectural MOO problem, it is almost impossible to
know for sure which are the optimal solutions. The

only way to be certain that there are no additional
non-dominated solutions than those foundbyNSGA-
II in this situation, is to test a wider range of solu-
tions with the same algorithm or with different algo-
rithms, and then compare the results with those ob-
tained here. In an ideal situation, the architect would
initially test multiple optimization algorithms with a
small sample of the design space and, then, choose
for the main optimization process the one with the
best performance (Belém and Leitão 2018).

Concerning the first non-dominated dot repre-
sented in the plot, it corresponds to two different
solutions with the same cost and sUDI. These solu-
tions correspond to the design variations that had
the best cost (3 723.75 €) but theworse sUDI percent-
age (45%). Note that these solutions only differ in
thematerial, i.e., one uses the 25% Translucent Panel,
whereas the other uses the 35% Translucent Panel.
Regarding the other variables, both solutions have a
skylight with 1.5 x 6.5 m.

In what concerns the other extremity of the
Pareto front, i.e., the solution with the best sUDI per-
centage (86%) and the worst material cost (9 304.70
€), it corresponds to a skylight of 3.8 x 8.9m that uses
the 25% Translucent Panel.

Besides evaluating the proposed methodology
in a real case study, we also set out to improve the
daylighting conditions of the exhibition space, which
currently presents a sUDI value of 70%. This means
that not all the non-dominated solutions found rep-
resent a solution with an improved daylight perfor-
mance, being that their sUDI values ranged from44%
to 86%. On the one hand, it is important to note that
the solution with the best sUDI value may not neces-
sarily be the best solution, as it also represents the
solution with the most expensive skylight. On the
other hand, since the goal was to improve the day-
light performance of the exhibition area, the archi-
tects would certainly not be interested in choosing
a solution with a sUDI percentage lower or equal to
70%. In short, the architects must select the solu-
tion that appraises them the most within the set of
solutions with an improved sUDI value, while taking
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Figure 3
Render images of
the exhibition room
for different
solutions of the
Pareto front.

into account the trade-offs between daylight perfor-
mance and cost.

CONCLUSIONS
In this paper, we focused our PBD research on aMOO
problem combining both daylight performance and
material cost. To this end, we proposed a PBD
methodology that takes advantage of the ADA ap-
proach, combining it with optimization algorithms.
Moreover, we also demonstrated howSA canprovide
valuable information about the relations between
the different design parameters, thus promoting a
more adequate definition of the problem’s design
space.

Given thatMOO frequently unveils the trade-offs

that exist between the different objectives, the pro-
posedmethodology provides the architect with a set
of optimal (or near optimal) solutions representing
the optimal trade-offs, thus delegating to him the se-
lection of the final solution.

Finally, the proposed methodology proved to
be a powerful tool in helping architects make more
informed decisions regarding different performance
aspects, from the early design stages.

The research carried out in the course of this pa-
per emphasized the importance of evaluating differ-
ent building performance criteria during the archi-
tectural design process, as well as the usefulness of
the feedback provided by the analysis tools to the
decision-making process. It was also highlighted
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that, in order to have a successful PBDapproach,mul-
tiple evaluations of design variations must be done.
Not only does this enable the collection of relevant
information about the existing relations between the
designparameters, but it also appraises their impacts
on building performance, thus, reinforcing the use-
fulness of parametricmodeling strategies for PBD ap-
proaches.

The use of the proposed methodology proved
that architects can effortlessly evaluate different per-
formance aspects according to the requirements of
their projects. This is due to the automatic gener-
ation of analytical models provided by the ADA ap-
proach, from which we took advantage in our MOO
approach. Moreover, in the end of each optimiza-
tion process, the architect is presented with a list
of all the evaluated solutions, from which it is then
possible to extract all the optimal solutions. This al-
lows architects to have a more in-depth look on the
different trade-offs between the objectives and de-
cide which solution best meets their requirements
regarding aesthetical value and/or performance re-
quirements.

In the future, we intend to test our methodol-
ogy with different optimization algorithms. Consid-
ering the current variety of optimization algorithms
and the new ones that are being proposed, and
that different algorithms can perform better than
others depending on the specific characteristics of
each problem, it is therefore important to test dif-
ferent algorithms to identify those that best perform
according to the optimization requirements (Belém
and Leitão 2018). Similarly, it is also important to
understand which algorithms deal best with single-
objective optimization, which behave the best with
MOO, or, even, which ones best support extensive
design spaces.

Another interesting topic to address in our fu-
ture research is the application of the methodology
to problems with higher number of optimization ob-
jectives. In the context of this paper, we performed
a MOO with two objectives. However, the MOO
methodology we proposed is not restricted to only

two objectives and, in fact, it allows designers to add
asmany objectives as they need. This is an important
advantage of the proposed methodology, since an
architectural project usually has a wide range of con-
flicting requirements that need to be accomplished
simultaneously. Nonetheless, it is noteworthy that
when an optimization problem includes more than
three objectives, not only the optimization process
requires considerable computational resources, but
also the visualization of the results becomes a very
difficult task. Thus, we also plan to research visualiza-
tion mechanism to improve upon these problems.
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