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This article explains the evolution towards the subject of digital fabrication of
thin shell structures, searching for the computational design techniques which
allow to implement biological pattern mechanisms for efficient fabrication
procedures. The method produces data sets in order to analyse and evaluate
parallel alternatives of branching topologies, segmentation patterns, material
usage, weight and deflection values as a user learning process. The importance
here is given to the selection of the appropriate attributes, referring to which
specific geometric characteristics of the parametric model are affecting each
other and with what impact. The outcomes are utilized to train an Artificial
Neural Network to predict new building information based on new combinations
of desired parameters so that the user can decide and adjust the design based on
the new information.
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INTRODUCTION
According to the lineof previous research, conducted
during courses andworkshops, it has been examined
how the evolution of architectural generative design
processes aim to apply similar physical and geomet-
rical principles of biological processes and to trans-
late them to fabrication processes (Giannopoulou et
al. 2019a);(Giannopoulou et al. 2019b). The theo-
retical framework speculated processeswhich imple-
ment manufacturing knowledge inside a computa-
tional design system. Inspired by the effects on pig-
mentationpatternsof shell growth (Figure1) andbio-

logical patternpredictionof reaction-diffusionmech-
anism (Turing 1952), the logic of stripe has been
tested as a construction system in several different
prototypes (Figure 2). As Stach (2010) said, instead
of post-rationalizing complex geometrical structures
the goal is to “pre-rationalize” the design method.
The logic of stripes was used as a pre-rationalization
construction system.

Relaxation processes (Piker 2013) and weighted
graphs representations (Nejur and Steinfeld 2016)
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Figure 1
The effects on
patterns of shell
growth and
perturbations. As
the shell grows, the
width of the pattern
domain increases
leading to changes
in the pattern
(Boettiger et al.
2009).

have been employed parallel as design tools for the
development of structural rigid skin and pattern,
made of flexible sheets of material (polypropylene).
The spring system, which allowed to arrive close to
minimal surfaces was linked with the segmentation
process, which divided the mesh into stripes, which
was linked with the fabrication process, that inte-
grated material properties, tolerances, constraints,
machine limitations and interactivity. The desired ef-
fect was manifested in one unified system in equilib-
rium, merging three design methods, three materi-
als and three corresponding fabrication techniques
(CNC, Laser cutting, 3D printing). The dual graph
concept implemented as a data object was capable
of generating a vast amount of interconnected com-
plexnetworksof stripe configurations to choose from
with possible structural characteristics.

However, a discussion has been raised upon the
stripes topology (if they are closed rings, or open),
their direction (if they are vertical or horizontal), in re-
lation with the branching topology of the shell struc-
ture and its performance. Also, from the structural
analysis with a very fast linear analysis of shell ele-
ments in 3D [1], a relevance has been observed be-
tween stress lines (curves that at each point are tan-
gent to one of the principal stress directions), and the
deflected areas. Those lines could not guarantee us-
able structural patterns (Tam andMueller 2015). This
has led to the study of an intelligent designprocesses
for developing a creative designmethodology of de-
cisionmaking based partly on the intuition, designer
skills and experience and partly on the prediction ca-
pabilities of machine intelligence (Giannopoulou et
al. in press a)

Further development is proposing a machine
learning approach, using the already established
parametric design workflow, as a method of expand-
ing the design space of segmented thin shell struc-
tures. The extracted data sets serve as a first filter of

visualising those attributes that are affected and/or
mostly affecting each other. The goal is to achieve
better understanding of which control parameters
that define the geometric characteristic of the shell,
influence mostly the structural performance, mate-
rial usage and number of segmented pieces and to
adjust the design based on the new information. The
graphs demonstrate a relation between the periodic
or nonperiodic pattern changes of the input andout-
put attributes. Finally, a vital benefit of creating the
database is to be utilised to train an Artificial Neural
Network to be able to give approximations of new
building information based on some desired param-
eters and to save computational time (Giannopoulou
et al. in press b).

Figure 2
Biodigital
Fabrication Studio
Series
2017/2018/2019,
University Master in
Biodigital
Architecture,
ESARQ-UIC
Barcelona, (bottom)
open branching
network with three
legs, (center)
cantilever with four
anchors, open
topology (top)
cantilever with six
anchors, closed
topology. (Image
by authors).
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BACKGROUNDMETHODOLOGY
Based on Sennett (2009), that in the learning pro-
cess,“technique -considered as a cultural issue rather
than as a mindless procedure” and it’s applications,
both come hand to hand, then, apprentice is in fact
a learning by doing process. So, if the method gives
the possibility of trial and error, then is implement-
ing intuition inside the design procedure. On the
other hand, Hanna and Mahdavi (2007) state that
“for several centuries the mathematical tools for ex-
plicit analysis have been dominant, but the vast ma-
jority of design decisions throughout history have
been based on experience of precedents. In a simi-
lar way, once amachine learning algorithm is trained,
the advantage is the same advantage as the human
builder’s training and experience”. But the problem
has to be simple and well defined.

Examining the intersections between machine
learning and simulation could enable a practice of
structural intuition. The integration of simulation
into computational design workflows give rise to
a performance-based design methodology. Using
parametric as well as generative design tools with
structural, energetic or other simulation tools is today
state-of-the-art practice. While experienced practi-
tioners rely in these situations on intuition, machine
learning can act similarly and predict simulation re-
sults out of precedent, how new systems would be-
have (Tamkeet al. 2018). In addition, “solution spaces
are always multi-objective bringing together diver-
gent criteria that don’t map to a single optima. As a
result, solutions are assessed not absolutely as true
or false, but rather qualitatively as better or worse.
To employ machine learning strategies in architec-
ture therefore necessitate methods by which results
can be evaluated holistically” (Tamke and Thomsen
2018).

Apart from examining the available simulation
models and computational tools employed in other
domains, as have been briefly described in previous
papers by the authors, the ability to integrate intel-
ligent design systems that can analyse, process and
transform design, could expand the ability to work

across knowledge domains and explore potential for
innovating existing practice. What Tamke & Thom-
sen (2018) refer to as extending design intuition, is
that “themodel becomes a creative-analytical engine
into which external data can be ported and analysed
or internally generated to create the basis for intelli-
gent design practices”.

Nowadays, apart from standard topological,
shape, size, structural optimisation methods, that
give standard results without allowing creativity or
the user participation, it is difficult to find an alter-
nativemethod, oriented to fabrication that could en-
able the designer to intervene. Also, during a genera-
tiveprocesswith evolutionary algorithms, the system
allows you to see only the final optimised option, it
is time consuming, computationally demanding, re-
quiring repeated iterations and is subject to error due
to local optima in the search space (Hanna and Mah-
davi 2007).

Also, coming from the field of statistical stud-
ies, there are some techniques (as subdividing, pri-
oritising, tracking impact of sensitive variables) to
process the larger design spaces produced by tak-
ing advantage of the constantly growing computa-
tional power. Using simulation models for analysis
the designer could be seen as an analyst who must
assume that only few factors of the simulation are re-
ally important (Kleijnen 1997), because of the com-
putational time required and the learning goals. Lin-
ear growth of variables or ranges, as parametricmod-
elling, triggers anexponential growthof the resulting
design space, but mainly produce geometric varia-
tionswith limitations in terms of topological transfor-
mations during the exploratory design tasks (Bernal
2016).

Under this context, the case study is examining
the feasibility of a machine learning approach which
will enhance the design space by predicting new re-
sults. The first step, described in this paper, is to au-
tomatically generate a database of 1890 possible al-
ternatives, which could be evaluated with reference
to the whole and partially based on the experience
of the user and intuition. A series of images and
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statistical charts will allow to visually compare par-
allel results, rather than one optimised option and
to analyse and have insights, relating numerical val-
ues for thepurposeof gaining experience and knowl-
edge. This learning process, directed especially for
fabrication, can also lead to a better decision mak-
ing and inform the design. When there are many
criteria involved and multi-objectivity, such as struc-
tural performance, less material waste, less stripes,
less connectivity, surface continuity thismethod con-
sequently, it will make the fabrication and assembly
process more efficient.

CASE STUDY
Owing to the limitations of parametric modelling,
the design methodology has an obvious obligation
to follow into the footsteps of its predecessors and
pursue a generative model that can iterate several
design solutions with manageable inputs and out-
puts. Moreover, considering the challenges offered
by fabrication, the designmethodology is compelled
to accommodate constraints related to material, fab-
rication tools and methods, assembly processes and
the general structural-aesthetic integrity. The objec-
tive at this stage is to establish a parameterized de-
sign workflow that revolves around actualising the
amalgamation of branching structures and thin shell
structures.

Unbranching Skeleton and Shell
Branching structures are based on geometric sys-
tems that expand through bifurcation without re-
turning to form closed cells. In this sense, branch-
ing structures resemble the structure of trees that
branch continually outward (von Buelow 2007), fol-
lowing their phototropic trajectories while maintain-
ing a dynamic structural equilibrium. Thus, branch-
ing patterns generated traditionally, for example fol-
lowing an L-System will have its origins in an Axiom.
This means it will have more points at a certain iter-
ation than it had at its origin. In our case, the de-
sign of the branching pattern needs to follow an op-
posite process, if the thin shell structure needs to be

mounted on the base. Which means that each itera-
tion must have less points than its origin, or to move
from outwards towards inwards. This significant pa-
rameter further dictates the design methodology to
perform a virtual unbranching of origin points into
an eventual nodal iteration (Figure 3). Thus, an un-
branching algorithm is generated following an in-
wardly growing progression that is programmed to
start from 4, 6, 8, 10 and 12 randompoints to end in 1
single point that refers to the average point location
between 2 or 3 points.

Figure 3
Branching/Unbranching,
(left) a typical
Lindenmeyer
system with an
outward growth of
branching, (right)
the adopted inward
growth of
unbranching.

The shell structure is achieved by considering the
initial unbranching structure as a skeletal shape, in
which each point is a branch node. The skeletal sys-
tem, used as medial axes, is converted into a net-
work of tubular quadrilateral meshes. To generate
the right sizes of branch nodes, a proximity algo-
rithm is generated so that a relation between the
thickness of the node is established with its distance
from the eventual pinnacle node. This relation is very
essential in a generating a smooth, minimal, non-
self-intersecting mesh with equidistant subdivisions
throughout its topology.

Learning Goals
The goal is to experiment the structurality of thin
shells with branching topologies so that they would
self-support and might withstand an additional
weight apart from the material itself, taking in count
at the same time the material usage. In contrary to
a previous design methodology of static inputs, the
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Table 1
Explains the
quantity of total
iterations based on
all combinations of
input attributes and
the total computed,
where the process
stopped for
unknown reason.

approach allows the generation of a dynamic input
geometry which permits the selection between var-
ious outcomes that fit best the criteria. General ref-
erence/criteria are defined as: deflexion, material us-
age, configuration and number of stripes, connec-
tivity and surface continuity. The learning goals to
examine are: How topology and spring strength af-
fect the number of stripes, how topology affect ma-
terial usage, and how topology affects structurality.
The learning process suggests that the combination
of some attributes indicating an efficient fabrication
processwhich is balancing assemble time, number of
sheets and extra weight due to the connecting ele-
ments and is up to the user to decide.

Database Preparation
The branching shell structurewas geometrically con-
structed to iterate. The database was based on the
selected input and outputs parameters as attributes
of the structure. Modifications, extensions and clus-
tering operations are applied to the initial model in
order to extract the appropriate data sets in the for-

matof CSVdata andcorresponding images. As amat-
ter of fact, the most interesting part of this process is
to determine, based on intuition and by experimen-
tation, those sets of attributes/features/behaviours
that influence most, inside the design workflow and
which ultimately will train the model to predict.

The input attribute introduced in the initial de-
sign phase is the Number of Anchor Points creating
a branching network of connected lines, the foun-
dation of a skeletal shape, second, third and fourth
input attribute are introduced, the Spring Strength
of the spring system, the loading vertical force -
Strength and themesh triangular subdivision param-
eter -Division, after the relaxation. A segmentation
parameter, the minimum amount of faces per stripe-
Kmin, is introduced as input aswell. A Seed also acted
as a modification factor, giving new anchor point lo-
cations. The output attributes are chosen based on
structural and fabrication criteria: Number of Stripes
and Sheets of Material, Cutting length inmm,Waste of
Material in sq. mm, Height in mm, Deflection in me-
ters andWeight in kilos.

Table 2
Sample of the
training data.
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Figure 4
Sample of the
images, in a table
organization.

RESULTS AND ANALYSIS
Based on the above input and output attributes, the
database (Table 2) was generated, computationally
extensive, performingall possible combinations in an
excel sheet, including the image for each alternative
(Figure 4). Table 1 explains the quantity of total it-
erations. As a result, different types of graphs were
tested to visualise which combinations of attributes
are giving a clear image of the relationship.

Charts with Vectorial Data
The real values of each attribute were converted to
vector values from 0 to 1, using the remapping com-
ponent and finding the minimums and maximums

bounds of each in all the database to be used as a
source. The sameprocess happened for all the inputs
and outputs values.

The vectorial analysis demonstrate how at-
tributes behave, throughout the timeline. We ob-
serve that the Cutting Length and Number of Stripes
donot affectDeflection (orangebars) (Figure 5). From
the analysis of theHeight, shown in blue bars, (Figure
6) we observe that it is affected, hierarchically, mostly
by the amount of anchors (grey line), second by the
Strength (higher values in themiddle of every 35 iter-
ations, that could mean that some specific point lo-
cations are generating higher structures), third, is fol-
lowing the Seed pattern and forth is affected by the

68 | eCAADe 37 / SIGraDi 23 - Design - ALGORITHMIC AND PARAMETRIC 3 - Volume 3



Figure 5
Chart of 230
iterations. Showing
the Deflection
pattern (orange
bars) how it
coincides with the
Seed (red line,
figure 6), every time
it restarts its loop.

Figure 6
Chart of first 230
iterations. Showing
the Height (blue
line) attribute
pattern that
coincides with the
Anchors and
Strength loop
dramatically.

Figure 7
Chart of 650
iterations with
vectorial data. A
periodic pattern of
Seed, Weight,
Sheets, Waste,
remains quite
constant, in all
iterations, even
when Division
attribute (grey area)
is changed. The
Waste of Material
(red line) gets slight
modification.

Force.
In the vectorial data analysis (Figure 7), it is pos-

sible to compare and see the patterns of change
for each attribute. More Subdivisions do not affect
Weight, Number of Sheets,Waste of Material.

CONCLUSION
The proposed research examined a design work-
flow that allows to produce sets of segmented shell
topologies. This generative method gives the user
the possibility to learn, analyse and balance priorities
between alternatives that respond to various needs
and to adjust the design based on the new infor-

mation. The vital benefit of creating such database
is to be utilized specifically to train an ANN to be
able to predict new models information based on a
new combination of desired input parameters (Gi-
annopoulou et al. in press).

According to Wujec [3], machine learning dras-
tically affects the field of design and architecture
through its direct link to computational design, how-
ever its applications are still in an experimental stage.
Although biological skin patterns (Kondo 2002) and
segmentation in fabrication open a new field for in-
terdisciplinary investigation and architectural appli-
cations, a machine learning approach to solve the
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complexities of such integration need to be fur-
ther developed. Under the framework of Ito’s ex-
tended intelligence (Ito 2018), “the convergence of
cyber, physical and biological systems of production”
(Sousa et al. 2019), requires not only new tools,meth-
ods and ways of understanding, but to question the
purpose as observers and designers of a machine-
based system of thinking to help developing sustain-
able and safe societies.
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