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Brickwork is the oldest construction method still in use. Digital technologies, in
turn, enabled new methods of representation and automation for bricklaying.
While automation explored different approaches, representation was limited to
declarative methods, as parametric filling algorithms. Alternatively, this work
proposes a framework for automated brickwork using a machine learning model
based on image-to-image translation (Conditional Generative Adversarial
Networks). The framework consists of creating a dataset, training a model for
each bond, and converting the output images into vectorial data for robotic
assembly. Criteria such as: reaching wall boundary accuracy, avoidance of
unsupported bricks, and brick's position accuracy were individually evaluated for
each bond. The results demonstrate that the proposed framework fulfils boundary
filling and respects overall bonding structural rules. Size accuracy demonstrated
inferior performance for the scale tested. The association of this method with
`self-calibrating' robots could overcome this problem and be easily implemented
for on-site.

INTRODUCTION
Robotic assembly for brickworks has been re-
searched since the 1990s, (Anliker, 1988) yet in the
last decade, a renewed interest for automatization
has emerged. The introduction of robotic assem-
bly in brickwork starts as a cost-effective alternative
to traditional assembly. More recently, designer and
builders have taken advantage of customizationwith
minor cost impact using digital technologies. (Bon-
wetsch, 2015) While picking-and-placing is a trivial
task for automation, the construction constraints is
still a challenge. The impact of digital tools also in-
fluenced how architects represent brickwork. Hence,
the design representation for the robotic bricklaying
is also the ‘instruction’ for its automation.

Bonwetsch (2015) classifies representation for
brickwork automation in two approaches: top-down

and bottom- up. While top-down representation
subdivides a global and well-defined structure (wall
boundary) into smaller units (bricks), bottom-up
representation concentrates on the units’ arrange-
ment and its local relationship ignoring overall con-
straints. Top-down approaches are excessively tech-
nical, removing the opportunity for innovation, in
turn disregarding the boundary constraint reduc-
ing the bottom-up applicability to real life scenarios.
A more appropriate representation would combine
both approaches, addressing a variety of shapes but
still following a boundary.

Lessdeclarativemethods, suchasmachine learn-
ing image-to-image translation models, are suitable
solutions. The machine learning models are able to
generalize the content of the filling for any boundary
condition based on image representations. (Isola et
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al., 2016) In parallel, machine vision technologies en-
large the robot’s ability to handle variations on anon-
going task, enhancing its flexibility. (Automata, 2018)
For these reasons, this paper investigates an alterna-
tive method of representation for automated brick-
work using images. This research suggests that using
images for representation methods would benefit
the integration of construction tasks to automation.
Moreover, the application of less declarative meth-
ods as artificial neural networks is an alternative to
be generic (different boundaries) while maintaining
construction logic and pattern aesthetics. This paper,
in turn, investigates whether image-to-image trans-
lation models’ outcomes are satisfactorily accurate
and generalized to be integrated to on-site robotic
assembly?

BACKGROUND: MASONRY AUTOMATION
ANDMACHINE LEARNING
Masonry is an additive construction method con-
sisting of layering units in courses from the lowest
to the highest level. Although brickworks automa-
tion has been available for over 30 years, researches
started to explore programmability potential shift-
ing from engineering-oriented practices towards a
design-oriented approach. The major downsides of
brickwork automation were related to their lack of
adaptation to the site environment and handling
variations in the predefined task.

To enlarge the robot’s adaptation to site condi-
tions, previous research integrated mobility features
and feedback systems to industrial robots. Alterna-
tives for mobility include (a) developing a container
to move the robot on site (Bärtschi et al., 2010), (b)
adapting tracks in the robot (Arch Union, 2018), and
(c) using an aerial structure to ‘suspend’ the robots
(Gramazio & Kohler, 2016). Helm et al. (2012) and
Dörfler et al. (2016) tackledbothmobility and captur-
ing information by equipping industrial robots with
a mobile track system and 2D and 3D scanners that
allowed the unit to detect objects or obstacles. Col-
laborative robots with mobility systems are also an
alternative to enlarge robot’s site adaptation. Will-

mann et al. (2014) publicised a complete workflow
for Aerial Robotic Construction testedwith blocks as-
sembly. One of the challenges faced concerned the
accuracy and reliability to place a brick in the ‘correct
position’. The inconstancy of ‘flying’ conditions re-
flected in system precision. These attempts focused
on incorporating hardware devices (wheels, drones,
cameras, scanners) to enlarge the robot’s site adap-
tation with minor efforts to increase its flexibility in
the bricklaying task.

Two different trials focused on solving task
adaptability with smart algorithm solutions for a dif-
ferent purpose. These robots use systems to capture
information from the environment and calibrate their
accuracy based on the task to be performed. Nair
et al. (2017) trained a robot to manipulate a rope
using self-supervised machine learning model and
imitation. Robot EVA (Automata, 2018), in turn, is a
small andunexpansive robotdeveloped tobe trained
based on imitation. The user first demonstrates the
move and positioning, then the robot replicates the
action calibrating the system according to the envi-
ronment. This paper suggests that the embodiment
of automation can go beyond sensing the environ-
ment and concentrates on creating a system that in-
terprets the environment. It supports that the pro-
cess of capturing the area to be filled, defining the
boundaries and calculating each brick position is an
intuitiveprocess that canbe replicated in automation
with the support of artificial intelligence.

Machine learning (ML) is a subset of artificial in-
telligence that uses statistical techniques to enable
computers program’s to progressively improve per-
formance on a specific task via experience (‘learn-
ing’), without being explicitly programmed (Samuel,
1959). According to Duda & Stork (1976), learning
refers to how the algorithm reduces the error on a
training set by adjusting its weights. In the paper
by Goodfellow, Bengio & Courville (2016), the task
was to generate new examples based on the images
in the training data, defined by them as synthesis
and sampling. As data representation is a key factor
for machine learning efficiency (Goodfellow, Bengio
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Figure 1
Framework
diagram.

& Courville, 2016), using images for machine learn-
ing has its challenges and specificities. ML models
trained with images datasets calibrate its weights ac-
cording to every pixel values (RGB).

Inspired by the visual cortex behaviour, Convo-
lution Neural Networks (CNN) is a powerful network
for image processing tasks, where each convolution
layer extracts a specific feature (filter) from the in-
put image. Gatys, Ecker & Bethge (2015) investigated
CNN potential for artistic purposes. The model un-
dertakes that content and style representations are
well separable in CNN. As a result, it produces a new
image combining content (photo) and style (artwork)
from two sources. Although the network results are
innovative, the input image constrains the content of
the outcome, which limits the generalization to other
images.

Along these lines, Goodfellow et al. (2014) sup-
ported that methods for generative models are less
disseminated than discriminative due to its complex-
ity to ‘converge’. They overcome this drawback by
proposing a Generative Adversarial Network (GAN),
whose architecture combines two models - gener-
ative and discriminative - in a competitive method
to create images undistinguished from the genuine
dataset. (Goodfellow et al., 2014). Isola et al.
(2016) proposed an intermediary approach, the Con-
ditional Generative Adversarial Networks (cGAN), a

general-purpose solution to image-to-image transla-
tion problems, publicly available as ‘pix2pix’. (Isola et
al., 2016) Like GAN architecture, Pix2Pix trains gen-
erative and discriminative networks simultaneously.
Alternatively, it uses a pair of images for training, the
input and the target. Pix2pix model learns the objec-
tive throughout training, by comparing the defined
inputs and outputs during and inferring the objec-
tive. cGAN was chosen to be part of this paper due
to its flexibility, the absence of labelling, and reliabil-
ity even with small datasets. (Isola et al., 2016)

MATERIALS ANDMETHODS
This paper proposed a framework for automated
brickwork using a machine learning model based on
image-to-image translation (cGAN) able to replicate
traditional bonding to every possible flat shape. The
framework development requires (a) the develop-
ment of a large dataset of brick walls, (b) the network
training and (c) the translation of images outcomes
into instructions for assembly. To create the dataset,
a filling algorithm describes the brick patterns for a
variety of wall geometries. The second step com-
prises training cGAN (Isolda et al., 2016) to generate
brick patterns based on each bond dataset using im-
age pairs with the input (wall boundary) and target
image (brick wall). Then, an image processing algo-
rithm converts the images into spatial positions for
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automatic assembly simulation. Fig 01 illustrates the
frameworks’major steps: recognizing aboundary, re-
turning an image of thewall with a bondpattern and,
finally, converting its positions in space to be built.

Generating the Dataset
The goal of this algorithm is to fill a variety of wall
shapes with predefined bond patterns. Each bond
pattern has a rule set to describe the brick arrange-
ment. The chosen bonds use a single standard brick
shape in two positions: stretcher and headers. The
bond differed themselves by the number of stretcher
and headers units, the brick’s arrangement, and how
each row is aligned with the one below and above.
The algorithm scans the polygon area (wall) checking
whether the brick is inside the boundary. The screen
size used in the framework (500 x 500 pixels) refers
to 500 x 500 cm. The filling algorithm developed for
the bricks’ patterns comprise four main methods: (a)
wall shapegeneration, (b) brick patterns filling, (c) ex-
portingmethods for images (png format - pixels) and
positions (csv format - vectorial).

Firstly, the algorithm creates a bi-dimensional
shape that representswall shapes. Both elements are
described by a quad and its four vertices, located into
one of four screen quadrants. The lower vertices are
constrained to the same vertical value to guarantee
that the first row is parallel to the floor. After the wall
boundary is set, the algorithm calculates the vertical
andhorizontalminimumandmaximumvalues defin-
ing a bounding box outside the polygon. (Fig. 2)
To describe the brick bond within the wall boundary,
this paper uses a ’Scan Line Polygon Filling algorithm.
(Kubitz, 1968; Reynolds 1997; Lieberman 1978).

The algorithm goal is to define the polygon
edges and scan its area pixel by pixel in the screen
using the edges as starting and stopping points. The
brick pattern algorithm, in turn, iterates respecting
the brick size instead of checking every pixel. The
minimum and maximum method from wall shape
creation defines the scanning area and the starting
point for scanning area combines the ‘back’ value for
the ‘x’ coordinate and the bottom value for the ‘y’ co-

ordinate. The algorithm, then, checks thepixel colour
in the brick centre and its four corners to assure that
the whole brick will be comprised within the bound-
ary (Fig. 2). The filling pattern varies for each bond-
ing, this paper uses four traditional bonding styles:
(a) Stretcher, (b) Header, (c) English, (d) Flemish. Af-
ter creating the brick pattern, the algorithm places
sliced bricks to fill in the remaining gap spaces. The
filling algorithm outputs comprise two images, the
wall boundary and the bonding, and a table. The ta-
ble summarises every brick position (coordinate X, Y
and Z), dimensions and type.

Figure 2
Scan line Filling
Algorithm Diagram.

Machine Learning
The machine learning step comprises the data set
pre-processing, the model training and testing.
Dataset creation is a key factor for training the net-
work. The chosen network cGAN requires two im-
ages to train the network. One image is the network
input (A) and the other is the target image (B). In this
research, input images describe the wall boundaries
while the target images describe the same shape
filled with the brick patterns. The data set is split into
training and testing groups, with a proportion of 70
% training - 30% testing. Training themodel requires
the upload of the training portion of the dataset and
to specify training parameters. The training method
requires image pairs as inputs, the direction of train-
ing (from input to target) and the number of itera-
tions (epochs) per image pairs. Since the training is
based on the relation of the data set pairs, each bond
has auniquemodel. After training themodel, its eval-
uation uses the testing group to test themodel’s abil-
ity to generalize the solution.
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Converting Images into Instructions
As a final step, the framework converts the informa-
tion from the network outcomes (images composed
by pixels) into positions in the space (x, y, z coordi-
nates). The proposed method scans every pixel in
the screen to find the bricks extremities. The corner
pixel differs from the other pixels due to its neigh-
bourhood pixels colours. (Fig. 3) The algorithm scans
the entire screen, finds the upper left corner. The po-
sitions are then exported as values in a table, which
can be used as instructions.

Figure 3
DIagram of the
method to convert
the output into
instructions.

EXPERIMENTS AND RESULTS
The experiments are divided into two approaches
aiming to (a) set up and ideal model for the network
(offline), and (b) simulate hypothetical on-site situa-
tions (online). Offline experiments tested a variety of
dataset representation style, the dataset size, num-
ber of iterations (epochs), and including information
in the target. (Zandavali, 2018) Since dataset style
and size weremore representatives, the experiments
and results are explained as follows. Online experi-
ments compared the four bonding for the same test-
ing sample. The chosen criteria to evaluate the mod-

els’ performance comprised of quantitative andqual-
itative features.

Evaluation Criteria and Sample
The quantitative aspect focuses on the performance
indicators calculated by the cGAN model for its net-
works and performance rate. Each model comprises
three networks; one for the discriminator, and two
for the generator (GAN and L1), whereas the ideal
trade-off is to compensate discriminator and gener-
ator simultaneously. The performance rate evaluates
the resemblance between the output and the target
comparing the value of every pixel in both images.
Alternatively, qualitative criteria focus on automated
construction constraints as (a) filling accuracy of the
input boundary (‘Boundary index’), (b) avoiding un-
supported bricks (overhangs larger than half of its
size), (c) replicating the brick size.

The best model performs the lowest discrimina-
tor and L1 loss and highest GAN loss for its quanti-
tative results. Performance rates range from 0 for a
discrepant copy, to 1 for a perfect copy. Qualitative
indicators take target images as a baseline, the closer
the output is to the target, the better its representa-
tion and the network performance. Boundary ‘index’
is the percentual difference area coverage of the fill-
ing for a target image (target percental = target bricks
area (/) boundary area (*) 100) and the output (out-
put percental = output bricks area(/) boundary area
(*) 100). Therefore, the smaller the boundary index,
themore accurate is the area coverage. Unsupported
bricks are counted for eachevaluation shapewithob-
tuse base angles. Since target images do not display
unsupported bricks, the fewer unsupported bricks in
the outputs, the better. Brick size ‘index’ calculates a
percentual based on the difference in the number of
rows from the target and output image (difference =
target number of rows - output number of rows). This
value is then divided by the baseline and multiplied
by 100 (difference(/) target number of rows (*) 100).

15 images were used as an evaluation sample
for qualitative criteria. The shapes vary in size (small,
mediumand large) and interior angles (square, acute,
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and obtuse angles - Fig. 4). The shapes are part of the
testing set from the dataset processed after the net-
work training. The variety of shapes aims to evaluate
discrepancies for different proportions, sizes and an-
gles. Shapes with obtuse internal angles on the bot-
tom vertices enable the evaluation of unsupported
bricks criteria.

Figure 4
Evaluation shapes.

Offline Experiments
Comparing Dataset Styles. The definition of style
was tested concerning two main aspects: (a) if the
model could perform well the ‘filling task’ and (b) if
the outcome could be easily transformed into vector
data for the assembly. The tested datasets used 200
images for training and iterated 100 times (epochs)
for the stretcher bond. The styles varied the filling
and colour strokes for the wall boundary in the input
image and for the header and stretcher bonds in the
target. The four styles are illustrated in Fig. 5 with
the respective RGB values for (a) background, (b) wall
stroke, (c) wall filling, (d) header brick fill, (e) header
brick stroke, (f ) stretcher brick fill, (e) stretcher brick
stroke. Greyscale values use one value varying from
0 (black) to 255 (white).

Figure 5
Dataset style of
input and target
images and its
corresponding
filling and stroke
colours.

The network was able to represent the overall
stretcher bonding logic for every style. (Fig. 6) The
area coverage for the boundary was similar within
the scenarios. However, style A and C show a weaker
boundary definition. Unsupported bricks index was
the most representative result and demonstrated
that using a distinct colour for the bricks (style A and
B) coped with the network to ’figure out’ the struc-
tural logic. (Table 1) The bricks’ size representation
discrepancy is similar for every dataset. The outputs
represented the standard brick (24 x 8 cm) with 26 x
9 cm. Style B displayed a superior quantitative per-
formance since it has lower discriminator and L1 loss
results and higher GAN loss results.

Table 1
Dataset style
comparison results.

Comparing Dataset Size. The experiment concern-
ing dataset size compared four scenarios, with 200,
500, 1000, and 2000 dataset. The dataset ratio (train-
ing/testing and regular/irregular shapes) is identical
for every scenario. (Table 02). The experiment com-
pares each dataset size trained for 100 epochs and
style D. Table 02 summarizes the results for each
dataset size scenario. Quantitative results demon-
strated a significant increase for GAN loss and de-
crease for the discriminator loss from scenario A‘ to
B’ (200 to 500 images training dataset). In turn, from
500 to 1000 and from1000 to 2000, discriminator loss
decreased only 0,028 and 0,033 respectively.

Similarly, GAN loss had a minor growth from 500
to 2000. Qualitative results were less expressive, ex-
cept for the ‘un-supported’ bricks. The major im-
pact of enlarging the dataset was the decrease of un-
supported bricks. While 1000 image training dataset
evaluation shapes displayed 24 unsupported bricks,
2000 images dataset reduced this value to 4. This re-
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Figure 6
Input and output
images for the four
dataset styles.

sult suggests that the network exposition to a large
dataset contributes to replicate an implicit feature,
which is not proportionally related to quantitative in-
dicators.

Table 2
Dataset size
comparison results.

Final Model Set-up. To define a final model, this pa-
per compared 8 eight trained models varying style

and dataset size using 100 epochs for training. Their
performances are plotted in Fig. 7 comparing quanti-
tative and qualitative criteria. Each model is referred
in the graph for its style (A - D) and the number of
images used in its training. Except for GAN loss, the
modelwith a lower valuehas a superior performance.
Two models displayed a superior performance (style
B - 500 and style D - 2000) are highlighted with a
darker grey in the graphs. Except for GAN loss, both
models performed similarly. However, the model in
style B usedone-quarter of the images for its training.
This fact reflects proportionally on the time expen-
diture of its training, from 1 to 4 hours in a standard
GPU computer. Another remarkable factor is the effi-
ciency of style B to avoid unsupported bricks. More-
over, the contrast within the colours in style B facili-
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Figure 7
Graph comparing
the performance of
the tested
networks.

tates post-processing the images. For this reason, the
set up combining style B, 500 images for trainingwas
used for more bonding tests, presented as follows.

Online Experiments
Comparing bonding. Since the goal was to adapt to
a task variation, this experiment aims to generate dif-
ferent bonding patterns for identical shapes, evalu-
ate how each populates the boundary, and how the
network performs for each pattern. Each bonding
has a specificmodel to train and test its capacity to fill
thewall shapes. English and Flemishbonding config-
uration prevents the filling for polygons with obtuse
angles in the base. For this reason, the wall shapes
used to train and test the model have base angles
within 90 degrees.

The results have shown (Table 3) that the net-
workwas able to describe each bondingmaintaining
the bricks’ local relationship. The number of unsup-
ported bricks was higher in the outcomes of Header
bonding than in Stretcher bonding. The discrep-
ancy of the size of the bricks was similar in every
bonding, reinforcing that this might be a limitation
of the network architecture. While Header and Flem-
ish bonds outcomes replicated the edges and bricks
strokewith a significant resolution, the strokeswithin
the darker bricks were poorly defined in the English
bond (Fig. 8). For a matter of curiosity, although
English and Flemish models were trained with con-
strained shapes, this paper also tested shapes with
obtuse base angles and the outcomes are displayed
in Fig. 8.

Table 3
Results for the
bonding
comparison.

CONCLUSION
The question posed at the beginning of this re-
search addresses the extent to which machine learn-
ing models, using images as a method of represen-
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Figure 8
Input and output
images for the four
bonding patterns:
Stretcher, Header,
English and
Flemish.

tation, could generate outputs satisfactorily accurate
and generalized for automated brickwork construc-
tion. The outcomes demonstrated promising results
to replicate thebondingpattern, in turn, the accuracy
to describe brick size was questionable (10%). More-
over, even the final models ‘placed’ unsupported
bricks occasionally. The relevance of dataset repre-
sentation was evident and, at the same time, unpre-
dictable. The inclusion of qualitative metrics was a
key feature to evaluate the network performance for
the specific task, while the losses and performance
rates lack ‘meaningful’ information. Better outcomes
couldbenefit from increasingor decreasing thenum-
ber of layers in the network, opting for different op-
timizers, changing the activation functions and bias
functions from the original network. Another limita-

tion faced in this work was the resolution of the net-
work output which compromises the conversion of
the bi-dimensional results into 3d models.

Themethod in this research combines top-down
and bottom-up methods gathering control and flex-
ibility to address the wall’s boundary. The outcomes
demonstrated that the network was able to recog-
nize the boundary and adapt to a variety of unknown
wall shapes. Moreover, the outcomes demonstrated
that the network also respected the local relation-
ship, inherent to every bonding, establishing a nego-
tiation between the overall shape and the emergent
pattern. Although the results demonstrated a few
limitations, this research contributes to a promising
and growing field that associates ‘smart’ algorithms
to automation. The potential of usingmachine learn-
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ing resides in its level of abstraction, which could in-
crease the system adaptability and enlarge the au-
tomation on site.

The results from this research unfolded possi-
ble paths for future work. One path envisions train-
ing the network for situations that go beyond pan-
els such as including openings and exterior corners.
A second attempt focus on testing the framework
outcomes in physical experiments which require the
adaptation of the solution to environment and ma-
chinery constraints. Finally, a third path comprises
comparing the results presented in this research to
other machine learning models in architecture, such
as ones using further image-to-image translation ar-
chitecture or using vector data information.
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