Predicates and Directives for a Parametric-associative
Matching Mechanism for Shapes and Shape Grammars

Rudi Stouffs’
! National University of Singapore
Lstouffs@nus.edu.sg

Predicates and directives are proposed to extend the versatility and expressivity
of a shape rule specification ‘language’. Specifically, a predicate serves to
express a condition on the application of a parametric-associative shape rule that
cannot simply be explicated within the left-hand side shape. A directive, on the
other hand, is a value specification that is required when applying a
parametric-associative shape rule, where this value specification cannot be
derived from or expressed within the right-hand-side shape. We discuss the
benefits of a set of predicates and directives to address seemingly simple requests
that might actually be hard to express otherwise. Specifically, we elaborate on the
motivation for introducing predicates and directives, and demonstrate the various

predicates and directives in more detail, including their implementation.

Keywords: shape rule, shape grammar, predicate, directive,

parametric-associative rule

INTRODUCTION

Shape grammars are a formal rewriting system for
producing languages of shapes (Stiny 1980). A shape
grammar specifies a set of rewriting rules that oper-
ate on shapes and, each, replace a matched subshape
with another shape under some allowable transfor-
mation. Although conceived for producing both ex-
isting languages and new languages of design (Stiny
and Gips 1972), shape grammars have been used
mainly for analytical purposes as a means to under-
stand the rules underlying given design styles. Only
in a few cases have they been used as an exploratory
tool in the design process. Beirdo et al. (2009) sug-
gest distinguishing between ‘grammars of designs;
being analytical grammars that reflect on a given
body of designs, and ‘grammars for designing; to de-
note the progressive development of a new grammar

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 403

for a new design context. We will adopt the term de-
sign grammars to denote ‘grammars for designing"

Design grammars present additional difficulties
compared to analytical grammars. Developing an an-
alytical grammar involves systematically determining
all possible shape rule variations corresponding to
the different designs in the given body, and encod-
ing these into a grammar. Rule variations are neces-
sarily finite and the encoding is done by the devel-
oper of the grammar, not by the user. The complex-
ity of the rule is therefore less important. Examples
abound (e.g., Stiny and Mitchell 1978; Downing and
Flemming 1981; Cagdas 1996). In the case of the Pal-
ladian grammar (Stiny and Mitchell 1978), rules de-
velop the grid and its extent, create openings, clean
up the line drawings, etc.

For design grammars, however, the designer acts

as both the developer and the user of the shape
rules. Rules may be defined from scratch or as alter-
ations of existing rules. The complexity of express-
ing one’s ideas into workable shape rules that can be
matched and applied by the shape grammar inter-
preter, i.e., the rule engine, then becomes an impor-
tant limiting factor. This complexity may be related
to some extent to the user interface but, more im-
portantly, will depend on the versatility and expres-
sivity of the rule ‘language’ In principle, a shape rule
combines a left-hand-side and a right-hand-side. The
left-hand-side specifies the shape that is searched
for and matched under an allowable transformation,
whereas the right-hand-side specifies the shape that
will be used to replace the matched shape under
the same transformation. Therefore, the designer
needs to identify, at the least, the left-hand-side and
right-hand-side shapes as compositions of spatial el-
ements, i.e, as drawings. Then, the rule language
minimally depends on the types of spatial elements
that are accepted by the rule engine, e.g., points,
line segments, plane segments, curves, etc. How-
ever, considering shapes of spatial elements only can
severely complicate the process of identifying which
rule to apply or where to apply the rule to.

All analytical grammars generally consider labels
as attributes to points to constrain rule application
and to assist in identifying the order in which rules
can apply. In the example of the Palladian gram-
mar (Stiny and Mitchell 1978), labelled points serve
to constrain which grid cells a particular rule may ap-
ply to. For example, a rule to extend the grid with
one row should only apply to the last row. Besides la-
bels, other spatial attributes can also be considered
to guide rule application and, at the same time, en-
rich the language of designs the grammar can pro-
duce. For example, Stiny (1981) considers a descrip-
tion function to construct verbal descriptions of a de-
sign. Where Stiny’s (1981) shape descriptions simply
reflect on the spatial elements—made up of blocks
from Froebel’s building gifts—that constitute the de-
sign and the way these are combined, other authors
describe the adoption of shape descriptions to guide

the generative process (Stouffs 2018a). Thus, spa-
tial elements, shape attributes and shape descrip-
tions can together constrain rule application. In ad-
dition to the left-hand-side of the shape rule match-
ing a part of the given shape spatially, any shape at-
tributes specified in the left-hand-side must be avail-
able in the matched part of the given shape and any
shape descriptions specified as part of the left-hand-
side must match corresponding shape descriptions
accompanying the given shape.

Even then, some conditions cannot simply be ex-
pressed as a combination of spatial elements, spatial
attributes and/or shape descriptions. Consider the
condition that some part of the shape, e.g., the inte-
rior of a polygon, should be devoid of any other spa-
tial elements. Shape rules only specify what should
be present and matched, not what should be absent.
The left-hand-side of a shape rule matches any part of
a shape that is equivalent under an allowable trans-
formation. However, the shape can always contain
other additional spatial elements that are unaffected
by, nor involved in the matching.

In order to be able to express void conditions,
Liew (2004) raises the concept of a zone descriptor
that can serve to specify a zone to be devoid of any
spatial elements. In addition, he extends the concept
of the zone descriptor, and of descriptors in general,
to other examples. Liew (2004) represents the zone
descriptor graphically, as a hatched region. However,
representationally, it makes little sense to conflate
the spatial representation of a shape in this way as it
will necessarily complicate the matching process. In-
stead, descriptors can be expressed as a separate rep-
resentational structure, just as shape descriptions are
commonly represented separately from the spatial
structure of the shape. Note that shape attributes, in-
stead, are necessarily represented as part of the spa-
tial structure they augment.

Liew (2004) uses the term descriptor quite
broadly to identify a collection of quite different
meta-language elements. Instead, here we adopt the
term predicate specifically to express a condition on
the application of a rule that cannot simply be expli-

404 | eCAADe 37/ SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2

cated within the left-hand side shape. The void pred-
icate is one such example. In addition, we adopt the
term directive to indicate a value specification that is
required when applying a rule, where this value spec-
ification cannot be derived from or expressed within
the right-hand-side shape. We will provide examples
of both predicates and directives below.

Thus, beyond the types of spatial elements ac-
cepted or the various non-spatial attributes allowed
for, the expressivity of shape descriptions (Stouffs
2018b, 2018c), on the one hand, and the ability to
add various kinds of predicates and directives to a
rule, either to constrain the matching (the left-hand-
side of the shape rule) or inform the manipulation
(the right-hand-side of the shape rule), on the other
hand, also impact the expressivity of the rule lan-
guage. Nevertheless, it is not because a set of rules
can be constructed to implement one’s idea, that the
designer will easily conceive of this rule set or even
find it worthwhile to spend the effort in developing
such a rule set. In this paper we specifically focus
on predicates and directives, and the role predicates
and directives can play in translating one’s genera-
tive idea in a rule or rule set. That is, we discuss the
benefits of a set of predicates and directives to ad-
dress seemingly simple requests that might actually
be hard to express otherwise. Specifically, we elabo-
rate on the motivation for introducing predicates and
directives, and demonstrate the various predicates
and directives in more detail, including their imple-
mentation.

PARAMETRIC-ASSOCIATIVE SHAPE RULES
Generally, a shape rule applies to a given shape
when it matches some part of the given shape under
an allowable transformation. Rule application then
involves replacing the matched subshape with an-
other shape under the same transformation. Allow-
able transformations may be of different kinds (Wort-
mann and Stouffs 2018). Shape grammars commonly
consider transformations of similarity, allowing for
translation, rotation, reflection and uniform scaling.
Whether these are further constrained to isometric

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 405

or Euclidean transformations (disallowing scaling) or
instead extended to, e.g., affine transformations (al-
lowing for stretching and shearing), these all have in
common that they can be represented by a transfor-
mation matrix.

Stiny (1977) also suggests a parametric shape
grammar, in which parametric shape rules operate
on non-parametric shapes. A parametric shape rule
embeds (numerical) parameters that govern the po-
sition of some spatial elements (or their boundary
elements) within the left-hand-side shape (and cor-
responding elements in the right-hand-side shape).
Stiny does not suggest any implementation. In-
stead, Woodbury (2016) presents the mechanisms
of a shape schema grammar, in which parametric
shape rules operate on parametric shapes. Here,
the matching mechanism is one of constraint satis-
faction. However, the algorithm is intractable and
no implementation yet exists. Instead, all imple-
mentations of parametric-style shape grammars rely
on a graph-based matching mechanism (e.g., Wort-
mann 2013; Grasl and Economou 2013; Stouffs 2018).
While the exact graph representation may differ from
one implementation to another, commonly, line seg-
ments, or the infinite lines carrying these segments,
and their intersection points, serve as edges and ver-
tices (or vice versa) of the graph. In addition, one
or more kinds of associations between line segments
(or their intersection points), such as parallelism and
perpendicularity, or equal lengths and distances, are
considered as invariants for the matching process.
As such, we adopt the term parametric-associative
shape rules. From here on, we limit our discussion to
parametric-associative shape rules.

PREDICATES AND DIRECTIVES

A predicate serves to express a condition on the ap-
plication of a parametric-associative shape rule that
cannot simply be explicated within the left-hand side
shape. The void predicate is one such example, an-
other is the shortest_line predicate. The latter pred-
icates that the specified line segment must be the
shortest line segment within the matching shape.

For example, when matching an n-sided polygon,
there may be n*2 possible matches to the same poly-
gon, as simple permutations of the cyclically ordered
matching of the polygon’s sides in one direction, or
by reflection in the other direction. Instead, by iden-
tifying a shortest line segment, this may be reduced
to only two possible matches, if the shortest line seg-
ment can be unambiguously identified. Note that the
predicate can be assigned to any line segment in the
left-hand-side shape and this line segment is not re-
quired to actually be the shortest among all line seg-
ments within this shape. The condition only applies
to any matching (sub)shape.

Directives, on the other hand, are value specifica-
tions that are required when applying a parametric-
associative shape rule, where this value specification
cannot be derived from or expressed within the right-
hand-side shape. For example, a new line segment
thatis added in the right-hand-side shape may be re-
quired to be at a certain distance from a given point.
If this distance is not already apparent in the left-
hand-side shape, e.g., as the distance between two
existing points, then it may be impossible to deter-
mine this distance unequivocally otherwise.

Note that some predicates (or directives) may be
automatically embedded in the rule matching (and
application) mechanism and do not need to be ex-
plicitly specified. For example, Grasl and Economou
(2013) present an implementation of a parametric-
associative shape grammar interpreter where the
matching mechanism automatically recognizes as-
sociations of equal length (or distance) as match-
ing constraints, thus automatically recognizing and
matching regular polygons. For example, a square
has four sides of equal length and, additionally, two
diagonals of equal distance. In our own implemen-
tation, the matching mechanism automatically de-
tects parallel and perpendicular lines. As such, with-
out any additional constraints specified, a square will
match any rectangle, having twice two parallel seg-
ments that are perpendicular with respect to one an-
other (Stouffs 2019).

Predicates

Liew (2004) proposes two types of descriptors for the
‘contextual requirements phase, a zone descriptor
and a maxline descriptor. As explained before, the
first excludes certain elements form a specified area.
It actually comes in two flavors. Firstly, the void de-
scriptor excludes any spatial elements (points or line
segments in the case of Liew (2004)) from the speci-
fied area. Secondly, the exclude descriptor is able to
limit the kinds of spatial elements that should be ex-
cluded, for example, line segments with a ‘gray’ at-
tribute.

As discussed before, while Liew (2004) repre-
sents the zone descriptor graphically, as a hatched
region, instead we choose not to conflate the spa-
tial representation of a shape and adopt a separate
representational structure for predicates and direc-
tives. Here, we choose to represent predicates and
directives in textual form. For example, the specifi-
cation of the void predicate takes the form of (a list
of) a list of coordinate pairs (in 2D) or triples (in 3D)
corresponding to the vertices of the polygonal area(s)
within which no spatial elements can be present (Ta-
ble 1). It must be noted that while the vertices are
explicated by their coordinates, they must necessar-
ily coincide with any of the line segments in the left-
hand-side of the shape in order for the vertices to
be recognized via the parametric-associative match-
ing mechanism. As such, while the area must be de-
void of any spatial elements, this does not apply to
the boundary of the area. Note also that while the
void area applies in three dimensions, it is (currently)
strictly a two-dimensional area.

Itis assumed that the void predicate can be gen-
erated for any given polygonal area. For example, in
the SortalGl plug-in for Rhino/Grasshopper (Stouffs
2018a), a ‘void predicate’ component accepts any
polygonal area, whether specified as a sequence of
points or line segments or, instead, as a closed poly-
line or surface, and returns the textual specification
of the corresponding void predicate.

The void predicate has been extended to ac-
cept the type of spatial element that should be ex-

406 | eCAADe 37/ SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2

Table 1

Seven predicates.
Each predicate
accepts a list of
arguments in curly
brackets.

predicate elementary argument example

void parenthesized list of coordinate tuples void: {((0,0}, (10,0), (10,10), (0,10))}
((x1,y1,21),(x2,y2,22),...)
parenthesized list of coordinate tuples, with initial list of void: {{pointP3D, lineSegmentP3D},
spatial element types (in curly brackets) (0,0,0), (10,0,0), (10,10,0), (0,10,0))}
({type, ...}, (x1,y1,21), (x2,y2,22), ...)

maxline line segment tag maxline: {#In1, #In2, #In3}
#InTag

bound line segment tag with preceding >’ and/or succeeding ‘<’ | bound:: {#In1<, >#In2}

nolabel spatial element (point, line or plane segment) tag nolabel: {#pt, #In1, #In2}
#tag

embeds Parenthesized list containing a plane segment tag as embeds: {(#plInTag, #In1, #In2, #pt)}
container element and one or more point and/or line
segment tags as embedded elements
(#pInTag, #tag, ...)

shortest_line | line segment tag shortest_line: {#In1}
#lnTag

longest_line line segment tag longest_line: {#In1, #In2}
#lnTag

cluded, e.g., points, line segments, plane segments,
or curves, allowing other spatial elements to be
present within the void area. Fig. 1 demonstrates
both versions of the void predicate using an exam-
ple inspired by Stiny’s (1977) Chinese ice-ray lattice
grammar. Stiny’s shape rules iteratively subdivide
an initial rectangle into a composition of triangles,
quadrilaterals and/or pentagons, each of a minimum
size, in each iteration by splitting one polygon into
two smaller polygons. Fig. 1 shows two rules that to-
gether can identify triangles that are void inside, and
thus have not been already subdivided, and have an
area larger than a given minimum area. The first rule
applies to any void triangle and adds a plane seg-
ment that fits the triangle. The second rule follows
from the first rule and removes the plane segment
again if the area is insufficiently large. The area condi-
tion is not implemented as a predicate but instead as
a description rule. The description rule contains the
minimum area and this value is compared with the
area of the plane segment. The value of the descrip-
tion rule remains unaltered at all times. Applying first
the first rule exhaustively and subsequently the sec-
ond rule exhaustively would result in the identifica-
tion of all triangles that can be further subdivided.

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 407

Liew’s (2004) zone descriptor is allowed to ex-
tend (in principle, infinitesimally) beyond the area’s
line boundaries. For example, when two line bound-
aries identifying adjacent sides to a void area only
touch, with neither line boundary extending be-
yond the intersection point, and the zone descrip-
tor engulfs this intersection point, then the respec-
tive matching line segments are not allowed to ex-
tend beyond their intersection point either. While
this ability might be visually attractive, it is a lot more
difficult to explicate. Instead, we consider a bound
predicate to indicate whether an apparent endpoint
to a line segment should, in fact, be an endpoint to
the matched line segment or whether, instead, the
line segment may extend beyond this endpoint.

The bound predicate accepts any number of line
segment tags and requires for each endpoint of each
line segment the specification of whether the bound-
ing condition applies (see Table 1 for an example
specification). Note that the endpoints are initially or-
dered as identified when constructing the line seg-
ment, but this may change upon manipulating the
segment (e.g., through rule application) upon which
the endpoints will be ordered corresponding their
coordinates (first X, then Y and finally Z).

void

a—a

void
‘lineSegP3D’

minimum_area?>planeSegP3D.area — minimum_area

If the bounding condition is specified to apply to
both endpoints of the same line segment, this be-
comes an expression of Liew’s (2004) maxline de-
scriptor. This descriptor expresses that a matching
line segment to the specified line segment must use
its full extent to match this line segment, that is, it
cannot be a part of a longer line segment. The max-
line predicate implements this behavior and can be
used as a shorthand for the bound predicate in the
case that the bounding condition is specified to ap-
ply to both endpoints.

Instead of the exclude predicate, we consider
a nolabel predicate (Table 1) which ensures that
the specified spatial elements (whether points, line
or plane segments) carry no attribute labels or de-
scriptions. Descriptions can be interpreted as semi-
structured labels, allowing parametric description
rules to operate on labels and, thus, as representa-
tional extension of labels. In order to identify the
‘no label’ spatial element within the left-hand-side
shape of the rule, we support the tagging of spatial
elements. Spatial element tags can be understood
as attributes to the elements, similar to labels (tags
are recognized by the ‘# symbol preceding the tag
identifier). However, different from attributes, tags
are particular to the rule in question and only subsist
within the rule matching and application process of

this rule. As such, tags are not considered attributes;
within a predicate (or directive) specification, the tag
solely serves to identify the spatial element the pred-
icate (or directive) is referencing.

Note that the nolabel predicate does not entirely
match the expressivity of the exclude descriptor, as
it neither applies to a ‘zone’ but instead requires to
explicate the ‘no label’ elements, nor does it allow
to specify a specific attribute value to more narrowly
limit what is meant to be excluded. As with all pred-
icates and directives, we rely on use cases, observa-
tions of user actions and user feedback to provide us
with insights into what kind of functionality is bene-
ficial and desirable, and to adjust and extend current
functionality where appropriate. One of the benefits
noted of the zone descriptor type, is the fact that it
allows to affect one type of spatial element with the
specification of another type of spatial element, typi-
cally of a higher dimensional order. For example, the
void predicate adopts the specification of a polyg-
onal area (i.e,, a plane segment) to express the ab-
sence of spatial elements of lower (or equal) dimen-
sion, e.g., points or line segments. This behavior is
also present in the embeds predicate (Table 1) which
allows one to specify that a point or line segment
should be entirely embedded within a given plane
segment.

Finally, other predicates considered are short-
est_lineand longest_line (Table 1), requiring a certain
line to be the shortest line, respectively, the longest
ling, in the matching shape. The shortest_line pred-
icate has been explained above, the longest_line
predicate behaves entirely similar.

Directives

Directives, on the other hand, offer an easy way to
provide additional information that cannot be ex-
pressed spatially in the right-hand-side of the shape.
When adding a new line segment at a particular an-
gle with respect to an existing line segment and/or of
a particular length, the specific value of that angle or
length may not be derivable from the shape as such,
and an additional statement may be required to in-

408 | eCAADe 37/ SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2

Figure 1

Two rules
demonstrating the
use of the void
predicate. Note
that, for visual
purposes, the void
predicate is not
fully explicated but,
instead, graphically
designated.

Figure 2

Arule
demonstrating the
use of the
point_on_line
directive, as well as
the shortest_line
predicate. Note that
neither the
predicate nor
directive is fully
explicated but,
instead, they are
both graphically
designated.

Table 2

Five directives. Each
directive accepts a
list of arguments in
curly brackets.

dicate the respective value. For this reason, we con-
sider, among others, an angle directive and a length
directive, as well as a distance directive. Rather than
only allowing for the specification of a fixed numeric
value, we also consider the specification of the value
through an expression that itself may refer to proper-
ties of other spatial elements, mimicking part of the
expressiveness of descriptions.

Considering the example of Stiny’s (1977) Chi-
nese ice-ray lattice grammar, each rule allows for a
convex polygon, whether a triangle, quadrilateral or
pentagon, to be split into two new convex polygons
by placing a single line between two of the original
polygon’s edges. The endpoints of the new line must
necessarily lie between the endpoints of the respec-
tive original polygon’s edges, but it is not specified
where the point should be placed. As placing the
point close to an existing endpoint may result in a
very small polygon, Stiny (1977) offers the specifica-
tion of a constraint that limits the absolute difference
between the two resulting polygonal areas to be be-
low a given value. Unfortunately, this is a constraint
on the result from rule application, which cannot be
dealt with in the context of predicates and directives,
unless as part of a subsequent rule that checks upon
the result. Here, we offer a partial workaround in the
form of a point_on_line directive that allows to expli-
cate a specific parameter value for the point’s posi-
tion on the line (between 0 and 1, assuming the end-
points have parameter values 0 and 1). The same di-
rective can also be used to specify an allowable in-

terval, by using an expression including the random
function to determine the parameter value (Table 2,
Fig. 2).

void
’lineSegP3D’

\
shortest_line

Other directives mainly support the creation of new
line segments, by indicating their length, direction,
distance to an existing point or line segment, or an-
gle with respect to an existing line segment. When
creating a new line segment, it will only be unequiv-
ocal if, for example, it connects two (end)points that
are already present or apparent in the left-hand-side,
such as points of intersection of line segments and/or
the infinite lines carrying these segments. Consider-
ing a matching mechanism that automatically recog-
nizes parallel and perpendicular line segments, a new
line segment can also be unequivocally determined
if specified, for example, as a perpendicular segment
to an existing line through an existing (end) point
and extending until it touches another line. How-
ever, in most (other) cases, some information may be
ambiguous, such as its length, direction, distance or
angle (Table 2). For example, if we'd like to dupli-
cate a line segment parallel to the original line seg-

directive elementary argument example

point_on_line | pair of line segment tag and parameter value point_on_line: {(#In1, 0.5), (#In2,
(#InTag, parameter) random(0.3, 0.7)}

distance triple of new spatial element tag, existing spatial element | distance: {(#newIn, #In1, 10.0), (#newpt,
tag and distance value #In1, ‘random(0.3, 0.7)’}
(#newTag, #tag, value)

direction pair of line segment tag and direction vector direction: {(#newln, (0.0,0.0,1.0})}
(#InTag, vector)

angle triple of new line segment tag, existing line segmenttag | angle: {(#newln, #In1, "pi/4")}
and angle value
(#newlLnTag, #InTag, angle)

length pair of line segment tag and length value length: {(#newIn, “#In1.length")}
(#InTag, length)

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 409

ment, with the endpoints on a perpendicular to the
original endpoints, we may be required to specify
the distance between the two line segments (Fig. 3
top). Such distance can be specified as a definite nu-
meric value or as a value derived from an expression,
e.g., a random value within a numeric interval or the
length (or other numeric property) of a spatial ele-
ment. Such expressions take the format of a descrip-
tion, or part thereof. The distance directive can also
be used to create a point with respect to an existing
point or line segment, although the new point would
necessarily need to lie on another segment or its in-
finite carrier line in order to be truly unequivocal. As
another example, in the case of extruding a polygon
(Fig. 3 bottom), the extrusion rule may need to spec-
ify both the direction vector and the length of extru-

sion.
N @
Implementation

The predicates and directives here presented have
been implemented as part of the SortalGl shape
grammar interpreter [1]. The SortalGl interpreter

I?\j

has been implemented in Python and is accessi-
ble, among others, as a Rhino/Grasshopper plug-in
(Stouffs 2018a). The plug-in defines both a rule ob-
ject and a shape object. A Shape component cre-
ates a shape object from Rhino geometry (points,
lines, polylines, arcs, quadratic Bezier curves, (flat)
surfaces); a dShape component additionally accepts
any number of descriptions. Additional components
allow labels (or descriptions) to be attached to Rhino
points, lines and surfaces, before providing these as
input to the Shape or dShape component.

A Rule component constructs a non-parametric
rule object from a left-hand-side and a right-hand-
side shape object; while a pRule component takes
two shape objects to create a parametric-associative
shape rule. The pRule component also accepts predi-
cates and directives. For each predicate and directive,
a component exists to create the predicate/directive
in its proper textual format. In addition, a number of
other components are available to assist in the con-
struction of descriptions, or parts thereof.

Finally, rules can be applied using a variety of
components. An Apply component results in a sin-
gle rule application; an ApplyAll component yields
the output from all possible rule applications; while
an ApplyAllTogether component combines the out-
put from all possible rule applications into a single
shape object. A Derive component applies a list of
rule objects in sequence. Finally, a Matches compo-
nent does not actually apply the given rule but, in-
stead yields the matching shapes to the left-hand-
side of the rule. As such, the Matches component can
be used to search for a given shape. Fig. 4 shows the
extrusion rules in Fig. 3 implemented in Grasshop-
per using the SortalGl plug-in. Note that additional
rules are used to create plane segments and to de-
termine the height of the extrusion in terms of the
desired Gross Floor Area. Note also that the dimen-
sions are not representative and the corresponding
floor-to-floor height is assumed to be 0.3.

410 | eCAADe 37/ SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2

Figure 3

Three rules that
extrude a scaled
quadrilateral. The
distance director is
used to scale the
quadrilateral
(non-uniformly),
while the direction
and length
directors serve to
extrude the scaled
quadrilateral. Note
that the void
predicate is
additionally used to
ensure the rules
apply to the
appropriate
quadrilaterals.

Figure 4

Six rules to scale
and extrude
quadrilaterals. The
scaling adopts a
fixed distance of
-0.1 on all sides. The
extrusion length is
based on the ratio
between the area of
the scaled
quadrilateral and
the original
quadrilateral,
mimicking the
calculation of a
target Gross Floor
Area basedon a
fixed plot ratio and
determining a
building height
from a fixed
floor-to-floor
height, here 0.3.
Note that the
dimensions are not
representative. The
left part shows the
visualization of the
results in Rhino, the
right part shows the
entire Grasshopper
model and the inset
clarifies the
sequence of rule
applications.

oy e

,8,0,00,@, "%,

SSHIXNIPLBNORG;
Sl ok Fhule BRAQS

O Egon= s SEe (33
=2 Bheer HEF %A FE

CONCLUSION

We demonstrated the use of predicates and direc-
tives in the conception of parametric-associative
shape rules in order to address seemingly simple re-
quests that might actually be hard to express oth-
erwise. The selected predicates and directives were
partly inspired by Liew’s (2004) work on descriptors,
although the result here presented draws as much
on use cases, observations of user actions and user
feedback to provide us with insights into what kind
of functionality is beneficial and desirable. We in-
tend to continue this process and adjust and extend
the current functionality where appropriate. Our ul-
timate objective is to make a shape grammar inter-
preter available that is usable in design practice.

ACKNOWLEDGMENTS

This work received partial funding support from Sin-
gapore MOE's AcRF start-up grant, WBS R-295-000-
129-133. | would like to thank Bui Do Phuong Tung
for his development work on the SortalGl shape
grammar interpreter, Bianchi Dy for her development
work on a previous version of the SortalGl Grasshop-
per plug-in, and Dan Hou for her feedback on the use
of predicates and directives in her development of a

Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2 - eCAADe 37 / SIGraDi 23 | 411

shape grammar.

REFERENCES

Beirao, J, Duarte, J and Stouffs, R 2009 ‘Grammars of de-
signs and grammars for designing — grammar based
patterns for urban design; Proceedings of CAAD Fu-
tures 2009, Montreal

Downing, F and Flemming, U 1981, ‘'The bungalows of
Buffalo, Environment and Planning B: Planning and
Design, 8(3), pp. 269-293

Grasl, T and Economou, A 2013, ‘From topologies to
shapes: parametric shape grammars implemented
by graphs, Environment and Planning B: Planning
and Design, 40(5), pp. 905-922

Liew, H 2004, SGML: a meta-language for shape grammar,
Ph.D. Thesis, MIT

Stiny, G 1977, 'Ice-ray: a note on the generation of Chi-
nese lattice designs, Environment and Planning B:
Planning and Design, 4(1), pp. 89-98

Stiny, G 1980, 'Introduction to shape and shape gram-
mars, Environment and Planning B: Planning and De-
sign, 7, pp. 343-351

Stiny, G and Gips, J 1972, 'Shape grammars and the gen-
erative specification of painting and sculpture; Infor-
mation Processing, 71, pp. 1460-1465

Stiny, G and Mitchell, WJ 1978, 'The Palladian grammar,
Environment and Planning B: Planning and Design,
5(1), pp. 5-18

Stouffs, R 2018a 'Where associative and rule-based
approaches meet: a shape grammar plug-in for
Grasshopper, Proceedings of CAADRIA 2018, Vol. 2,
Beijing, pp. 453-462

Stouffs, R 2018b, ‘Description grammars: a general no-
tation, Environment and Planning B: Urban Analytics
and City Science, 45(1), pp. 106-123

Stouffs, R 2018c, '‘Description grammars: precedents re-
visited, Environment and Planning B: Urban Analytics
and City Science, 45(1), pp. 124-144

Stouffs, R 2019 'Shape rule types and spatial search;, Pro-
ceedings of CAAD Futures 2019, Daejeon, South Korea

Woodbury, R 2016, ‘An introduction to shape schema
grammars, Environment and Planning B: Planning
and Design, 43(1), pp. 152-183

Wortmann, T 2013, Representing shapes as graphs, Mas-
ter’s Thesis, MIT

Wortmann, T and Stouffs, R 2018, 'Algorithmic complex-
ity of shape grammar implementation, Artificial In-
telligence for Engineering Design, Analysis and Manu-
facturing, 32(2), pp. 138-146

Cagdas, G 1996, ‘A shape grammar: the language of tra-
ditional Turkish houses, Environment and Planning B:
Planning and Design, 23(4), pp. 443-464

[1] http://www.sortal.org/

412 | eCAADe 37/ SIGraDi 23 - Design - SHAPE GRAMMARS AND RULED BASED SYSTEMS - Volume 2

