The synergy of non-manifold topology and reinforcement

learning for fire egress

Wassim Jabi'!, Aikaterini Chatzivasileiadi?,

Nicholas Mario Wardhana®, Simon Lannon?, Robert Aish’

1234 Welsh School of Architecture, Cardiff University > The Bartlett School of Ar-
chitecture, University College London

1234 fiabiw|chatzivasileiadia|wardhanan|lannon}@cardiff.ac.uk >robert.

aish@ucl.ac.uk

This paper illustrates the synergy of non-manifold topology (NMT) and a branch
of artificial intelligence and machine learning (ML) called reinforcement
learning (RL) in the context of evaluating fire egress in the early design stages.
One of the important tasks in building design is to provide a reliable system for
the evacuation of the users in emergency situations. Therefore, one of the
motivations of this research is to provide a framework for architects and
engineers to better design buildings at the conceptual design stage, regarding the
necessary provisions in emergency situations. This paper presents two
experiments using different state models within a simplified game-like
environment for fire egress with each experiment investigating using one vs. three
fire exits. The experiments provide a proof-of-concept of the effectiveness of
integrating RL, graphs, and non-manifold topology within a visual data flow
programming environment. The results indicate that artificial intelligence,
machine learning, and RL show promise in simulating dynamic situations as in
fire evacuations without the need for advanced and time-consuming simulations.

Keywords: Non-manifold topology, Topologic, Reinforcement Learning, Fire

egress

INTRODUCTION

One of the important tasks in building design is to
provide a reliable design for the evacuation of the
users. As the complexity of the building increases
this becomes an even harder task. In parallel, non-
manifold topology (NMT) is an innovative computer-
based representation of architectural entities and can
be useful for spatial design, BIM-based design devel-
opment and building performance analysis for com-
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plex geometries. Prior publications by the authors
suggest that NMT provides topological clarity that
has the potential to allow architects to better design,
analyse, reason about, and produce their buildings
(Aish and Pratap, 2012; Jabi, 2015; Jabi, 2016, Jabi
et al, 2017; Jabi et al., 2018; Aish et al., 2018, Chatzi-
vasileiadi et al., 2018).

Emergency situations are not static, but rather
dynamic and uncertain. To provide the optimum



support in such situations, not only is there a need
there for an ideal evacuation and routing system, but
the building itself also needs to be designed opti-
mally. Thus, one of the motivations of this research
is to provide a framework for architects and engi-
neers to better design buildings with regard to the
necessary provisions in emergency situations. This
research aims to further current research on NMT,
by hypothesising that the incorporation of machine
learning (ML) and in particular reinforcement learn-
ing (RL) can help enhance the current design work-
flows and expand the applications of this represen-
tation to include effective evacuation planning in
cases of emergency, e.g. fire egress planning. This
is demonstrated through the use of an NMT mod-
elling library developed by the authors, called Topo-
logic [1].

PREVIOUS RESEARCH
ML is a fast-emerging field and initial research (Krij-
nen and Tamke, 2015; As, Pal and Basu, 2018; Bloch
and Sacks, 2018; Koo and Shin, 2018) has shown that
it can be applied directly to provide architectural in-
sights. In this respect, it has also been argued that the
use of NMT could contribute towards a richer repre-
sentation of spatial relationships in architectural de-
sign (As, Pal and Basu, 2018), which can be useful for
emergency situation egress analyses. A wide range
of evacuation systems based on ML has been pre-
sented in prior studies. For example, Inoue et al. (In-
oue et al., 2008) proposed an indoor evacuation sys-
tem, generating static escape routes. However, in the
case of sudden changes in access, for example unex-
pected obstructions, this system would be short of
providing an alternative route and therefore lacks re-
liability. This is the case with traditional evacuation
systems, which do not consider either the changing
environmental conditions in the building or the indi-
vidual features of the evacuees and as a result they
can pose a life risk.

Other studies have considered human-related
factors; however, GIS researchers have identified de-
ficiencies due to the lack of convenient algorithms

(Meijers, Zlatanova and Pfeifer, 2005; Lee, 2007; Lee
and Zlatanova, 2008) or other researchers (Atila et
al., 2018) argue that these factors are not sufficient
for proper navigation. Ozel (Ozel, 1992) was one of
the early pioneer researchers who investigated the
human perspective and more specifically the human
behaviour in fire incidents through simulation, in-
cluding the cognitive effects of the physical envi-
ronment into the decision making process. How-
ever, the model ran on a limited CAD system and
doesn't offer the possibility of training considering
multiple goal structures. Moreover, there are stud-
ies that, although considering human factors in the
design of their indoor navigation system, such as dis-
abled or elderly and blind people (Khalifa, EI Kamel
and Barfety, 2010; Blattner, Vasilev and Harriehausen-
Muhlbauer, 2015; Tsirmpas et al., 2015), they do not
address emergency cases. Atila et al. (Atila et al.,
2018) studied the combination of different human
factors extensively; however they used building sur-
veying devices for the building case study which can
be more expensive and cumbersome than initiat-
ing a computer-based design model which can also
benefit and be updated from the simulation feed-
back resulting in an optimised design. There exist a
number of highly accurate and comprehensive stud-
ies, such as (Luo and Beck, 1994; Bong, 2000; Baum,
2011), including very detailed model inputs regard-
ing fluid dynamics, thermodynamics, gas flow and
specific information on materials and building ge-
ometry and structure. However, these approaches
involve computationally intensive numerical simula-
tions that would be too detailed, slow and expensive
to use for conceptual design.

Knight et al. (Knight et al., 1999) developed a
field modelling tool based on qualitative reasoning,
called ‘Smartfire) to be used by the fire safety engi-
neering community members who are not experts in
modelling techniques. It is applicability, though, is
limited because it focuses on the set-up of fire models
through metric diagrams and place vocabulary and
only addresses single rectangular rooms. Champ-
neys [2] explored the possibility of developing a sim-
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plified model to simulate the spread of fire; how-
ever, only 2D and no 3D effects were investigated.
The majority of the evacuation modelling software
tools, such as FDS+Evac [3], FPETool [4], EVACNET4
[5], TIMTEX (Harrington, 1996), WayOut [6], STEPS [7],
SIMULEX [8], fall short of a comprehensive modelling
environment, as they exhibit one or more of the fol-
lowing limitations: they use basic grid structures and
a rectilinear numerical mesh, do not incorporate fire
data or occupant behaviour and do not allow for vi-
sualisation or might allow for partial visualisation, e.g.
2D or 3D. Most of them are also not freely available to
the public or open-source.

Based on the above, there is no study taking into
account artificially intelligent agents that learn inde-
pendently, a dynamic routing service, fire data and
environmental factors at the same time, which can
also contribute to informed design decisions at early
design stages. It is also argued that the complexity
and the size of buildings nowadays requires further
research for efficient emergency egress and route se-
lection (Ozel, 1992), especially considering recent dis-
astrous fire incidents, such as the Grenfell Tower one
[9]. In this study, therefore, we address this shortcom-
ing by presenting a proof-of-concept experiment for
a dynamic and intelligent indoor evacuation system
in emergency situations, as part of the spatial design.

REINFORCEMENT LEARNING

RL is a branch of artificial intelligence (Al) and, more
specifically, ML, in which an agent optimizes their be-
havior within an environment to maximize an allo-
cated award. Similar to how one may use treats to
teach a pet to do tricks, RL agents learn to carry out a
sequence of actions that maximize their final cumula-
tive award. The difference between a pet doing tricks
and an RL agent is that the latter learns how to do the
trick on their own by observing its environment and
learning from its own actions. In a way, it trains itself
and thus can be thought of as an artificially intelligent
agent. In doing so, RL agents also learn how to avoid
actions that either do not reward them or give them
a negative award (a punishment). The explanation of
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RL is based on [10].

+ Agent: The artificially intelligent agent. This
may be abstract. In our example, the agent is
represented by the locations of the rooms that
it visits.

« Environment: This is the overall environment
in which an agent is operating. In a game
of Chess or Go, the environment is the game
board. In our case, a building (i.e. a CellCom-
plex with an associated graph) is our environ-
ment (Figure 1).

« State: The different states or conditions the
agent may find themselves in. In our case,
we experimented with both an environment-
based state model where the state is repre-
sented as the index into the list of vertices in
the graph and an agent-based state model,
where the state was represented as a vector of
the adjacent room temperatures. The agent
transitions from one state to another by tak-
ing an action.

Action: Agents can take any number of ac-

tions. An action is usually represented as an

integer number that identifies which action
an agent has selected for his/her next move.

In our case, we have allowed 6 possible ac-

tions representing the direction of travel of

the agent (i.e. north, south, east, west, up and
down).

Reward: After every action, the agent usually

receives an award represented as a number.

This can be negative, zero, or positive. It is

up to the designer of the RL environment to

decide how frequently and the amount of re-
ward to give the agent based on their action
and the state of the environment.

It is beyond the scope of this paper to delve into
the mathematics of RL which can be quite involved.
If you are interested in the mathematical equations
and logic of RL, we recommend the following ref-
erences (Sutton and Barton, 2018; Thombre, 2018,
[10]). In general, there exists probability distributions



that can be assigned to all the states and all the re-
wards which depend on the preceding state and ac-
tion. The main driving force for an RL system is to
predict the overall expected return. This, in turn, is
driven partially by how greedy you design the sys-
tem to be. For example, you can design the algo-
rithm to appreciate immediate rewards more than fu-
ture rewards (instant gratification) by discounting fu-
ture rewards. Finally, the probability that an agent
will take an action given a certain state is governed
by what is a ‘policy’ A policy is a function that maps
a state to the probability that an agent will select an
action. Finally, a ‘value’ function is used to estimate
the expected return of an action given a state. This
helps the agent make a choice (e.g. “Should | buy the
stock of company A or company B?”). Basically, an RL
system learns to optimize their policies so that, after
many episodes of training, they can make wise de-
cisions that maximize their overall return and allow
them to reach their goal.

TOPOLOGIC: A NON-MANIFOLD TOPOL-
OGY MODELLING LIBRARY

Topologic [1] is an open-source software modelling
library enabling hierarchical and topological repre-
sentations of architectural spaces, buildings and arte-
facts through NMT. Topologic is designed as a core li-
brary and additional plugin to two host applications,
namely Dynamo and Rhino3D/Grasshopper, which
are parametric modelling platforms commonly used

in architectural design practice. These applications
provide workspaces with visual programming nodes
and connections for architects to interact with Topo-
logic and perform architectural design and analysis
tasks.

Written using the Object-Oriented Programming
(OOP) paradigm, at the top level of Topologic’s class
hierarchy is the Topology class, which is inherited by
other classes representing topological entities, such
as Vertex, Edge, Wire, Face, Shell, Cell, CellComplex
and Cluster. With respect to building design, a space
(or room) corresponds to a Cell and a building cor-
responds to a CellComplex (which is a set of Cells
connected through their Faces). It should be noted
that, for the most part, Topologic does not contain
any geometrical entities or computations. Instead, it
relies on those from the individual host applications
to ensure compatibility with their internal geometry
kernels. In addition, the topological classes can be
used to represent their geometry counterparts. The
architecture, capabilities and applications of Topo-
logic can be found in prior publications by the au-
thors (Aish et al., 2018; Chatzivasileiadi et al., 2018;
Jabi et al., 2018; Wardhana et al., 2019).

Topologic provides a unified topological frame-
work within which the designed model can serve as
a driver for multi-disciplinary analysis, e.g. building
fabric, energy analysis, structural analysis and spatial
reasoning. Apart from the topological entity classes,
and within the spatial reasoning domain, the au-
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Topologic



thors have developed the Graph class, which pro-
vides methods to derive the dual graph from any
Topology and use it for spatial analysis, including
path planning.

EXPERIMENT SETUP AND INPUT PARAME-
TERS

The experiment was conducted using Topologic v
0.8.5 within Dynamo version 2.3 running on a Mac-
Book Pro 13 inch with an Intel® Core(TM) i5 @
2.90GHz, with 8GB RAM. The laptop was running the
Windows 10 Operating system under Apple’s Boot-
camp. The code is based on open source code pro-
vided at[10]. The code was modified from its focus on
a 2D grid environment to enable navigation within an
arbitrarily complex 3D CellComplex. While the origi-
nal environment was static, in our adaptation, it is dy-
namic with a fire simulation that spreads through the
building and incrementally increases the tempera-
turein each room accordingly. We also experimented
with changing the state model to be agent-based,
while the original was strictly model-based. For the
experiment we followed the workflow below:

1. Create a CellComplex of a hypothetical build-
ing: The first step was to design and build
a hypothetical and abstracted building made
of identical cubical cells each measuring 10
units. This model was then converted into
a non-manifold CellComplex using Topologic
so that adjacency information can be queried.

2. Convert CellComplex to Graph: Topologic has
a special class called “Graph” that implements
graph theory. Graphs are made of vertices
and edges. The dual graph of a CellComplex
is a cluster of edges connecting the centroids
of adjacent Cells in the CellComplex.

3. Define the initial temperatures. Each Cell in
the CellComplex is assigned a temperature.
To indicate the source of a fire a Cell is as-
signed a very high temperature (e.g. 120°C).
The remainder of the Cells are assigned an am-
bient temperature of 20°C.
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4. Simulate the spread of a fire in the building.

A simplified formula was devised to simulate
the spread of fire in the building for each time
step in the simulation, using a heat transfer
rate of 1.20. The topological adjacency in-
formation was used to compute the resultant
increase in temperature for each cell and for
each time step in the simulation.

. Run the Reinforcement Learning algorithm:

This algorithm allows an artificial agent lo-
cated in a starting Cell to learn how to escape
the expanding fire and find a fire exit. This
algorithm requires the following as input: (a)
The building graph that defines its topology,
(b) Vertices: This is a list of Topologic Vertices
that represent the location (centroid) of each
room in the building. This is needed to syn-
chronize the order of the room centroids with
the list of temperatures and the location of
agents and goals, (c) The initial location of an
agent: This is expressed as an integer index
into the list of Vertices, (d) A list of goals: This
is a list of integers into the list of vertices that
represents the locations of the fire exits. We
experimented with one exit and three exits in
the corners of the building. The simulation
ends once an agent reaches a fire exit, (e) Am-
bient temperature: This is a number that indi-
cates what is considered a safe temperature,
(f) Fatal temperature: This is a number that
indicates what is considered a fatal tempera-
ture, e.g. 120°C[11]. If an agent enters a room
that has a fatal temperature, then the simula-
tion ends, (g) Room temperatures: This is a list
of temperatures for each time step resulting
from the spread of fire simulation conducted
in the previous step, (h) Number of episodes:
This indicates the number of episodes in the
simulation, which was set to 3000 in our case.
The agent will learn from each episode and
improve its performance, (i) Maximum num-
ber of episode steps: This number indicates
the maximum number of steps allowed in one



episode, which was set to 100 in our case. This
allows the agent to explore its environment
and learn from it for the next episode.

. Environment-based vs. agent-based state
models: As mentioned above in the descrip-
tion of the RL algorithm, an agent transitions
from one state to another and collects posi-
tive, neutral, or negative rewards after each
state transition. The role of the algorithm is
to devise a policy that maximizes the proba-
bility that an action will yield a state that of-
fers a larger reward than other options. The
question then becomes: how should a state
be represented? In a chess game, a state
may be represented as the location of a chess
piece. Indeed, in the first iteration of the algo-
rithm, we used a global list of states each cor-
responding to a room in the building. There-
fore, if a building had fifty (50) rooms, the
RL algorithm created 50 states. Multiplied by
six (6) possible actions for north, south, east,
west, up, down, this yields a search space of
50x60 = 3000. This was a limited approach as
it required a different state for each building
that one wishes to simulate. Additionally, the
number of states and number of actions dra-
matically affects the time needed to complete
a simulation. That is, this was not scalable.
Therefore, it would be preferable to limit the

the condition it finds itself in based on the
time of the simulation and its location in the
building. The agent examines the six immedi-
ately adjacent rooms to its own location and
assigns a 0 if it is a room with an ambient tem-
perature or a 1 otherwise. This means that the
agent can be in one of seven (7) states indi-
cated by the range [0..7]. At each time step,
the agent is only aware of its immediate sur-
roundings. This is a reasonable assumption as
a person in a real-life situation would be able
to assess the danger in immediately adjacent
rooms. The hypothesis is that the reinforce-
ment learning algorithm will eventually allow
the agent to learn to associate a lower state
number with a higher reward and the agent
will take actions that it predicts will have the
highest probability to yield a state with a num-
ber as close to zero (0) as possible.

Figure 2

The a) CellComplex,
and b) its dual
graph created using
Topologic

. rable t . Figure 3

number of states. While the initial iteration of Fire spread

the algorithm worked norrnfally‘and produced simulation in the
good results, we felt that it is did not truly re- CellComplex

flect what an agent would be aware of dur-
ing a fire evacuation. Specifically, we felt an
environment-based state model, whilst obey-
ing the Markov property [12], gave the agent
universal knowledge of its environment, the
temperatures in each room even on different
floors or ones that are quite far from its own
location. To remedy this limitation, we de-

Step1l \ Step16  \

EXPERIMENTAL RESULTS

The learning curves for the two experiments
(environment-based state model and agent-based
state model) for the cases of a CellComplex with one

cided to experiment with an “agent-based”
state model. Specifically, the states that the
agent can be in are no longer the rooms, but
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Figure 4

Average rewards
per number of
episodes for the
environment-based
state model

Figure 5

Average rewards
per number of
episodes for the
agent-based state
model

Figure 6
Screenshot of the
environment-based
state model
experiment at later
episodes: a) one
exit, b) three exits

Figure 7
Screenshot of the
environment-based
state model
experiment at early
episodes: a) one
exit, b) three exits

or three exits are plotted in Figures 4 and 5. Train-
ing performance was monitored at different intervals
during learning, so Figure 4 presents the average
reward per 300 episodes and Figure 5 the average
reward per 500 episodes.

Environment-based state model
Average reward per 300 episodes

Reward
o

Episodes
=== 0One Exit ===Three Exits

Agent-based state model
Average reward per 500 episodes
2.00

0.00
-2.00
-4.00
-6.00
-8.00

-10.00
-12.00
-14.00
-16.00

Reward

-
-

Episodes
= == One Exit e=—Three Exits

In both experiments the agent was able to find an
exit, i.e. the goal, and the graphs in Figures 4 and 5
show that three exits were found easier than one exit.
The graph on Figure 4 shows how the environment-
based state model better performed as it obeyed the
Markov property [12]. In the three exits case the
agent achieved higher rewards compared to the one
exit case in both experiments, achieving higher per-
formance overall (about 43% higher in the agent-
based model and 115% in the environment-based
model, compared to the one exit case). In the first ex-
periment, the highest average score per 500 episodes
it got in the three exits case was 1.05 and in the
one exit case -1.59, while in the second experiment
the highest average score per 300 episodes it got
in the three exits case was 9.63 and in the one exit
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case 9.40. As can be seen in Figure 6 as well, in
the environment-based experiment, the agent gets
to the nearest exit in the three exits scenario much
quicker with lower overall temperatures (i.e. before
the fire spreads). Moreover, Figure 7 presents the
results for one and three exits for the environment-
based model at episode 500. Even this early in the
training, the one with three exits (b) finds the exit.
The path is not optimal, but succeeds to find the exit
nevertheless. The one with the one exit (a) fails miser-
ably. The execution time for one exit was 50 seconds
on average, while for the three exits was 32 seconds.

Although the environment-based state model
yielded better results, we will continue to explore
agent-based models since environment-based state
models are not scalable. Further investigation into
the appropriate number of episodes, number of
steps or reward system is warranted for the agent-
based experiment. These experiments present pre-
liminary results, demonstrating what we already
know intuitively that the inclusion of three exits
rather than one is preferable. Further calibration of
the model could provide more valuable insights into
the safe and effective design of buildings at early
stages.

3) One exit
Episode 2800
Step9

b) Three exits
Episode 2900
Step 6

2) One exit
Episode 500
Step 12

b) Three exits
Episode 500
Step 16



LIMITATIONS AND FUTURE WORK

This paper presented a proof-of-concept experiment.
The inputs, e.g. for temperature and fire spread, are
mainly based on abstract figures, with no true physics
being incorporated. No material properties for the
building elements, environmental factors such as hu-
midity and CO2 levels of cells (rooms) or human fac-
tors, e.g. disabled or elderly or blind people, have
been taken into consideration. The fire spread model
can be enhanced by linking it to a more sophisticated
and pre-computed fire growth model, by including
true physics to model the effect of buoyancy by giv-
ing different update rules for vertical or horizontal fire
spread. Similarly, the agent speed of travel and deci-
sion making can be modelled after real observations
of how humans behave in cases of emergency. While
there was no real limitation on the complexity of the
building, we chose a basic design including similar
cubical cellsin the interest of clarity and for the reduc-
tion of simulation time. In addition, as no validation
method has been pursued, it is unknown if the num-
ber of steps and episodes are the most appropriate
for the specific experiment. Moreover, the ratio be-
tween negative and positive rewards needs further
investigation and could contribute to the improve-
ment of the agent’s learning.

While working within a limited game-like envi-
ronment is useful to establish methodologies and in-
vestigate fundamental issues, ultimately, we are in-
terested to know if the system can be applied to real-
world data. To that end, we have started an inves-
tigation of how Q-Learning on graphs performs us-
ing a realistic building. We chose the “Sample Ar-
chitectural Project” BIM model that comes bundled
with Autodesk Revit as an example. We converted
the BIM model into a Topologic model using custom
scripts and derived its dual graph and vertices which
we then used for the same Q-Learning algorithm as
in the previous experiments. While we are not ready
to share the results as this is an on-going investiga-
tion, we can report that we are witnessing that the
agent learns to avoid the nodes that have high tem-
peratures and seeks ‘safer’ routes to the exits (Figure

8). It is important to note that this is a very prelimi-
nary finding and further investigation is needed.

CONCLUSIONS

This paper demonstrated a proof-of-concept about
the application of reinforcement learning on graphs
for fire egress situations, through the use of a non-
manifold topology library, called Topologic. The ex-
periment showed that the synergy of RLand NMT can
provide informed decisions about the number and
location of fire exits in buildings, contributing to safer
environments. Future plans include a deeper analy-
sis on the effective synergy of NMT and ML for spatial
design in conjunction with energy analysis optimisa-
tion and BIM-based design development. Further re-
search into this area could include higher complexity,
varied geometry, multiple agents, multiple fires and
different number and locations for exits. Further pa-
rameters could also be included to enhance the ex-
periment and expand the application areas. These
could be the use of different building types, shapes,
internal layouts, windows and doors (Topologic aper-
tures), different materials and internal firebreaks. The
incorporation of fire and human data and character-
istics could further improve the proposed model and
make it both more realistic and user-centred. A sensi-
tivity analysis in order to define the appropriate num-
ber of steps and episodes as well as reward model
could also add to the refinement of the proposed ex-
periment.
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Figure 8

Initial results
indicating that in
later episodes, the
agent avoids
dangerous nodes
and finds safer
routes to its goals
(indicated in green
spheres).
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