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Introduction

Shape grammars are primarily simulated manually 
and drawn as two-dimensional grammars, although for 
architectural applications in particular, shapes represent a 
variety of meanings for building three-dimensional grammars 
in space. The reality is that despite architecture’s three-
dimensionality, the clarity of the plan remains a primary 
convention of architectural representation. Simultaneously, 
the plan necessarily represents the coordination of more 
than it can convey alone. Ultimately a variety of architectural 
representations are needed to collectively convey formal 
intent and even more to convey built form. This is a familiar 
observation in shape computation, resulting in efforts to 
develop parallel and three-dimensional shape grammars to 
clarify intentions (Koning and Eizenberg, 1981; Duarte, 2005) 
as well as shape grammar interpreters to illustrate grammars 
as computer implementations (Tapia, 1999; Hoisl and Shea, 
2011; Trescak et al, 2012; Grasl and Economou, 2013). Despite 
these efforts, grammars remain close to their two-dimensional 
origins without an adaptable framework that can lend itself 
to multiple custom endeavors. Here, a shape grammar for 
John Portman’s Entelechy I (Ligler and Economou, 2015) is 
featured as a case study to illustrate a process for translating 
an architectural language from a two-dimensional grammar 
to an automated three-dimensional grammar.

The history of shape grammars, particularly as applied 
to domestic projects (Stiny and Mitchell, 1978; Koning and 
Eizenberg, 1981; Duarte, 2005), suggests their formalism 

as a productive method to parse the compositional system 
embedded in Entelechy I. The existing grammar features 
forty-four shape rules in four stages that generate the plans 
of the house. Additionally, playful variations of alternative 
designs serve as proof-of-concept for the expressiveness of 
the language. The shape rules of the grammar are structured 
as schemas that generate simple single plan outputs as well 
as layered plans for multiple level schemes utilizing a variety 
of conventions including layers, labels, and levels. However, 
these planar representations leave much formal information 
lost in translation.

John Portman’s bewildering architecture spans over 
five decades of a hybrid practice uniquely involving both 
architecture and development. The architectural language 
shaped by these dual, and often conflicting, considerations 
attracts critical interest (Goldberger, 1990; Jameson 1991; 
Sorkin, 1994; Koolhaas, 1998), yet little conversation is 
directed towards his formal contributions in architectural 
theory. While known primarily for his hotels and large-scale 
commercial works, Entelechy I (Figure 1) is Portman’s 1964 
personal residence in Atlanta, Georgia that he identifies as 
the singular work embodying his architectural philosophy 
(Portman, 1976). The concept for the house was to create a 
domestic pavilion where his family could live privately as 
well as entertain publicly with a sense of openness, natural 
light, plants, and water features. Portman’s concept of “space 
within space” is evident both functionally and formally in the 
house. Functionally, the house is separated into two spatial 
zones: private family and public entertaining. Formally, 
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the house is designed around a grid of exploded columns 
ordering the floor plans to articulate two types of space: major 
and minor. Promoting order and variety, this arrangement 
maintains a set rhythm while allowing for flexibility and 
variation over time. 

are generated in a coordinated manner, layered rules apply; 
some rules only apply to an individual upper or lower layer; 
or all layers at once; and so forth. In this way, the layer 
grammar allows shape rules to function as overlays, while 
their output in production distinguishes the specificity of 
each layer as an individual plan level. This is analogous to 
the difference between the layers of a CAAD modeling space 
and the clean output of a coordinated design in paper space. 
Stage 2 develops the basic configurations within the system 
by concatenating spaces horizontally and vertically, opening 
up light wells, and adding staircases to connect levels. Stage 
3 resolves interior and exterior details to fully articulate the 
style of the house.  Finally, Stage 4 cleans up any remaining 
labels and finalizes the process. The rules within these stages 
are parametric too to provide both flexibility and precision in 
the design process. A basic representation of all shape rules in 
the four stages discussed above is shown in schemas in Figure 
2. Most of the labels and the parameters of the variables of the 
rules are omitted for clarity of representation. The layered 
rules for the generative specification of additional plans are 
also omitted for clarity of representation.

The grammar outlined in Figure 2 is quite expressive; 
it can generate the original two plans of Entelechy I and a 
generous set of additional plans that are characterized by 
similar properties with the original plans of the house. These 
new plans come in a variety of scales and numbers ranging 
from the simplest plan depicting a single module in the 
language to plans and pairs of plans depicting more complex 
single or double-story mat building configurations to several 
n-tuples of plans depicting high-rise domestic configurations. 
A nice set of designs to illustrate the rising complexity of the 
language and its adaptation to more complex architectural 
programs and light considerations is given in terms of 
three designs generated for three distinct S, M, and L scales 
(Ligler and Economou, 2015). Significantly these three 
variations have been produced by a mixed modeling process 
involving a manual application of shape rules by drawing in 
a two-dimensional CAAD system as well as an automated 
application of planar rules by selecting possibilities among 
alternative rule applications. More specifically, the process 
involved drawing and deleting shapes in Rhino and drawing 
and applying rules in Grapeline, a web interface for a shape 
grammar in HTML 5 (Grasl and Economou, 2013, 2011). The 
final designs were produced using both techniques typically 
relying on some automated application of basic rules to 
fix the structure of the design and a manual application of 
several rules to build its detail. The exploded axonometric 
representation of Entelechy I in Figure 1 shows the two plans 
of the house generated by the grammar accompanied by 
manually drawn projections of the sections and the rooftop 
of the house. Solid lines have been inserted in the exploded 
axon to signify the planes of sections of the house and dotted 
lines respectively to foreground the correspondence of the 
functions between the first and second plan of the house.

Figure 1: Entelechy I, 1964: composite illustration including plans and 

sections.

From 2D to 3D Grammars

The initial grammar for Entelechy I (Ligler and Economou, 
2015) has a straightforward structure to capture intuitively 
the incremental process through design from basic concepts 
to developed articulation. In all, the grammar is comprised of 
four stages:
Stage 1: Framework 
Stage 2: Configuration  
Stage 3: Style
Stage 4: Termination

The first stage sets up the framework of the design and 
articulates its boundaries, underlying grid, and the two main 
spatial conditions of the plan(s): the delineation of the major 
and minor spaces. Significantly, this stage of the grammar 
defines the number of plans that will be generated in the 
process. These plan levels are treated as layers in the shape 
rules. The rules are always layered in the sense that if only 
one plan is generated the layered rules are null; if two plans 
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Towards Building Grammars

The representational challenge of shape grammars for 
architectural applications, which with few exceptions are two-
dimensional drawing grammars like the case study grammar 
for Entelechy I, is communicating three-dimensional building 
grammars that illustrate shape rules in space. One potential 
way to translate shape rules from two-dimensions to three is 
to simply extrude the planar rules. While this results in three-
dimensional “spatial” relationships, it only adds one new type 
of information: height. While this may be all that is needed 
for some rules, ultimately this does not add much to clarify 
architectural relationships. Alternatively, the planar grammar 
can be redefined in the process of translation and incorporate 
formal information lost in the reduction to two-dimensional 
representation. This is the approach taken in this effort to 
rework the grammar for Entelechy I. The four stages ordering 
the grammar as well as the conceptual intent of the shape 
rules remain the same, but the shift in representation provides 
opportunities for modification.

The process to translate shape rules from two-dimensions 
to three is ideally facilitated by automated implementation. 
For the work outlined here, the GRAPE engine was utilized 
for translation, where the GRAPE (GRaph shAPE) plug-in for 
C# for Rhino 5 is paired with graph grammars implemented 
using GrGen.NET (Grasl and Economou, 2011). Within this 
computational framework (Figure 3), the two-dimensional 
drawing grammar of Entelechy I can be transformed into a 
three-dimensional building grammar. The major effort in the 
process is to rewrite two-dimensional shape rules as graph 
grammars coded following C# conventions. As each rule is 

written, it can be compiled through the graph rewriting system 
Gr.Gen.NET and updated in the Rhino 5 plug-in. Compiled 
rules can be procedurally applied in Rhino 5 to generate three-
dimensional geometry in the familiar design space of existing 
software. After executing a rule set in the plug-in, the user is left 
with a model that can be further manipulated and developed 
by transformations using any existing Rhino tools. Once this 
framework is setup, the main effort to code the grammar 
can begin. Coding the rules is a trial-and-error process using 
nodes, edges, labels and a variety of attributes to define graph 
equivalents of shape rules. These rules are coded individually 
and modeled after shape rules with both a left-hand and right-
hand-side. An example of this is shown in Figure 3. In this case, the 
two-dimensional shape rule fills in the corners of the underlying 
grid recursively until the rule no longer applies and a complete 
three-dimensional grid is produced. The code for the rule shown 
is constructed with alternatives so that the rule can complete 
the initial grid both in a single level and for any additional levels 
added vertically. To do this, there are two left hand sides to the 
rule: the first looks for nodes in a diagonal relationship and the 
second looks for L-shapes including two nodes stacked on top of 
each other. For each left hand side, a right hand side to fill with 
a subsequent node is written. Finally, the last part of the rule is 
written to recursively apply the rule as many times as a match is 
found. This allows the user to select the rule once and complete 
the grid framework for all planar and vertical growth defined 
before the rule is applied. In all, the process to code the shape 
rules involves reworking and reevaluating the initial grammar 
to add rules, subtract rules, combine rules, and transform them 
based on the combined requirements of graph grammars and 
resultant three-dimensional outputs. 

Figure 2: Shape rules in four stages to articulate Entelechy I.
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Figure 3: Diagram of the process: (a) two-dimensional shape rule; (b) C# coded rule; (c) three-dimensional implemented rule in Rhino 5. 

Figure 4: Composite production of three-dimensional rules implemented in GRAPE for Rhino with the equivalent two-dimensional shape rule 

illustrated in the center: (a) defines vertical growth; (b) completes an initial spatial lattice horizontally and vertically, (c) adds cylinders as figures 

at intersections of the grid, and (d) completes the Boolean operation to define major and minor spaces.
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Translating the grammar as an automated description 
creates an interactive design tool for generating variations 
of Portman’s domestic architecture that can be visualized 
and utilized for a variety of purposes. The work so far nicely 
illustrates this flexibility and its potential. Figure 4 shows the 
translation of a series of two-dimensional shape rules of Stage 
1 of the grammar to their equivalent three-dimensional rules 
in the GRAPE for Rhino 5 plug-in. The freedom of the system 
allows for many interpretations and uses within a familiar 
CAAD environment where shape rules can be considered both 
for their original application in the grammar and for useful 
extension in other compositional pursuits. This work opens 
up a set of possibilities for active shape grammars that can be 
creatively applied, while also suggesting a process for testing 
and reworking shape rules in an automated environment.

Discussion

Architectural composition is an active process that involves 

working back and forth between representations that simulate the 

varied relations of a final construction. Abstract elements are utilized 

in this process of formation to map to requirements of the final form. 

An initial abstraction is helpful to foreground the important aspects 

of a particular design as well as to free the intuition to interpret them 

in multiple ways. Conventional representations in two and three-

dimensions are abstract design tools utilized to calculate these acts of 

composition although they can only partially capture the implications 

of actual spatial construction. Instead, a layered process moving across 

both two and three-dimensional representations is necessary for the 

coordination required of an architectural design. These relations are a 

key architectural act and are hierarchically ordered in any design based 

on how they can resolve the design problem for a desired architectural 

performance. No matter what criteria they consider (function, light, 

circulation, systems, structure, etc.), these architectural relations are by 

definition spatial. Shape grammars represent these spatial relationships 

defined by architectural compositions as shape rules. Their simple 

computational means utilizing shapes and visual rules are familiar to 

architectural designers who use similar constructs to sketch and work 

through the multiple design relations of any given project. 

Architectural relationships necessitate coordination in three-

dimensional space. Where shape grammars aim to identify spatial 

relationships of a design, they are challenged by the limits of their 

traditional setup as two-dimensional drawing grammars in the context 

of architecture. Here we have proposed one process to translate 

from a two-dimensional drawing grammar to a three-dimensional 

building grammar to describe John Portman’s architectural language 

as expressed in Entelechy I. This work begins to address a process of 

working from visual computation to symbolic computation and back 

again in a productive way that suggests an expansion of potential 

applications of shape computation. Shape grammar discourse in this 

context could involve flexibility to rework, reinterpret, and apply 

shape rules across varied contexts to foreground different design issues 

in an automated CAAD environment. 

In the specific context of John Portman’s work, this research aims 

to explore shape grammars as a method of visually calculating both new 

and existing designs by extracting the compositional information of a 

single architectural work representative of design principles applied to 

a larger, diverse corpus. Design logic across varied contexts can then 

be formally outlined and explored constructively. Recent recasting 

of shape rules and rule schemata  (Economou and Kotsopoulos, 

2014) emphasize the generous and often ambiguous formalism of 

shape grammars (Stiny, 2006) as illustrative of the expressive and 

productive possibilities that are currently underdeveloped within 

shape computation discourse as a whole. A plural approach to shape 

grammars is suggested as a method to explore their full potential as 

tools to understand Portman’s formal contribution and suggest their 

larger application in the pursuit of creative architectural design.
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