
GE
NE

RA
TI

VE
 S

YS
TE

M
S

657

Introduction

Shape grammars are primarily simulated manually
and drawn as two-dimensional grammars, although for
architectural applications in particular, shapes represent a
variety of meanings for building three-dimensional grammars
in space. The reality is that despite architecture’s three-
dimensionality, the clarity of the plan remains a primary
convention of architectural representation. Simultaneously,
the plan necessarily represents the coordination of more
than it can convey alone. Ultimately a variety of architectural
representations are needed to collectively convey formal
intent and even more to convey built form. This is a familiar
observation in shape computation, resulting in efforts to
develop parallel and three-dimensional shape grammars to
clarify intentions (Koning and Eizenberg, 1981; Duarte, 2005)
as well as shape grammar interpreters to illustrate grammars
as computer implementations (Tapia, 1999; Hoisl and Shea,
2011; Trescak et al, 2012; Grasl and Economou, 2013). Despite
these efforts, grammars remain close to their two-dimensional
origins without an adaptable framework that can lend itself
to multiple custom endeavors. Here, a shape grammar for
John Portman’s Entelechy I (Ligler and Economou, 2015) is
featured as a case study to illustrate a process for translating
an architectural language from a two-dimensional grammar
to an automated three-dimensional grammar.

The history of shape grammars, particularly as applied
to domestic projects (Stiny and Mitchell, 1978; Koning and
Eizenberg, 1981; Duarte, 2005), suggests their formalism

as a productive method to parse the compositional system
embedded in Entelechy I. The existing grammar features
forty-four shape rules in four stages that generate the plans
of the house. Additionally, playful variations of alternative
designs serve as proof-of-concept for the expressiveness of
the language. The shape rules of the grammar are structured
as schemas that generate simple single plan outputs as well
as layered plans for multiple level schemes utilizing a variety
of conventions including layers, labels, and levels. However,
these planar representations leave much formal information
lost in translation.

John Portman’s bewildering architecture spans over
five decades of a hybrid practice uniquely involving both
architecture and development. The architectural language
shaped by these dual, and often conflicting, considerations
attracts critical interest (Goldberger, 1990; Jameson 1991;
Sorkin, 1994; Koolhaas, 1998), yet little conversation is
directed towards his formal contributions in architectural
theory. While known primarily for his hotels and large-scale
commercial works, Entelechy I (Figure 1) is Portman’s 1964
personal residence in Atlanta, Georgia that he identifies as
the singular work embodying his architectural philosophy
(Portman, 1976). The concept for the house was to create a
domestic pavilion where his family could live privately as
well as entertain publicly with a sense of openness, natural
light, plants, and water features. Portman’s concept of “space
within space” is evident both functionally and formally in the
house. Functionally, the house is separated into two spatial
zones: private family and public entertaining. Formally,

Lost in Translation:

Abstract

The prevalent mode of shape grammar output is a two-dimensional drawing grammar. For architectural applications, these two-
dimensional shape rules can hold a variety of interpretations in three-dimensional space. This work translates an existing grammar
from a manual two-dimensional drawing grammar to an automated three-dimensional building grammar to explore the challenges
and opportunities that this translation suggests in the larger context of shape computation. The case study considered here is a
grammar interpreting John Portman’s architectural language as defined by the house Portman identifies as emblematic of his design
principles, his 1964 personal residence Entelechy I.

Keywords: Shape Grammars, Shape Grammar Implementations, Formal Composition, Generative Systems, John Portman

Heather Ligler
Georgia Institute of Technology, USA

h.ligler@gatech.edu

Thanos Economou
Georgia Institute of Technology, USA

economou@gatech.edu

Towards an Automated Description of John Portman’s Domestic Architecture

SI
GR

A
DI

 2
01

5

658

the house is designed around a grid of exploded columns
ordering the floor plans to articulate two types of space: major
and minor. Promoting order and variety, this arrangement
maintains a set rhythm while allowing for flexibility and
variation over time.

are generated in a coordinated manner, layered rules apply;
some rules only apply to an individual upper or lower layer;
or all layers at once; and so forth. In this way, the layer
grammar allows shape rules to function as overlays, while
their output in production distinguishes the specificity of
each layer as an individual plan level. This is analogous to
the difference between the layers of a CAAD modeling space
and the clean output of a coordinated design in paper space.
Stage 2 develops the basic configurations within the system
by concatenating spaces horizontally and vertically, opening
up light wells, and adding staircases to connect levels. Stage
3 resolves interior and exterior details to fully articulate the
style of the house. Finally, Stage 4 cleans up any remaining
labels and finalizes the process. The rules within these stages
are parametric too to provide both flexibility and precision in
the design process. A basic representation of all shape rules in
the four stages discussed above is shown in schemas in Figure
2. Most of the labels and the parameters of the variables of the
rules are omitted for clarity of representation. The layered
rules for the generative specification of additional plans are
also omitted for clarity of representation.

The grammar outlined in Figure 2 is quite expressive;
it can generate the original two plans of Entelechy I and a
generous set of additional plans that are characterized by
similar properties with the original plans of the house. These
new plans come in a variety of scales and numbers ranging
from the simplest plan depicting a single module in the
language to plans and pairs of plans depicting more complex
single or double-story mat building configurations to several
n-tuples of plans depicting high-rise domestic configurations.
A nice set of designs to illustrate the rising complexity of the
language and its adaptation to more complex architectural
programs and light considerations is given in terms of
three designs generated for three distinct S, M, and L scales
(Ligler and Economou, 2015). Significantly these three
variations have been produced by a mixed modeling process
involving a manual application of shape rules by drawing in
a two-dimensional CAAD system as well as an automated
application of planar rules by selecting possibilities among
alternative rule applications. More specifically, the process
involved drawing and deleting shapes in Rhino and drawing
and applying rules in Grapeline, a web interface for a shape
grammar in HTML 5 (Grasl and Economou, 2013, 2011). The
final designs were produced using both techniques typically
relying on some automated application of basic rules to
fix the structure of the design and a manual application of
several rules to build its detail. The exploded axonometric
representation of Entelechy I in Figure 1 shows the two plans
of the house generated by the grammar accompanied by
manually drawn projections of the sections and the rooftop
of the house. Solid lines have been inserted in the exploded
axon to signify the planes of sections of the house and dotted
lines respectively to foreground the correspondence of the
functions between the first and second plan of the house.

Figure 1: Entelechy I, 1964: composite illustration including plans and

sections.

From 2D to 3D Grammars

The initial grammar for Entelechy I (Ligler and Economou,
2015) has a straightforward structure to capture intuitively
the incremental process through design from basic concepts
to developed articulation. In all, the grammar is comprised of
four stages:
Stage 1: Framework
Stage 2: Configuration
Stage 3: Style
Stage 4: Termination

The first stage sets up the framework of the design and
articulates its boundaries, underlying grid, and the two main
spatial conditions of the plan(s): the delineation of the major
and minor spaces. Significantly, this stage of the grammar
defines the number of plans that will be generated in the
process. These plan levels are treated as layers in the shape
rules. The rules are always layered in the sense that if only
one plan is generated the layered rules are null; if two plans

GE
NE

RA
TI

VE
 S

YS
TE

M
S

659

Towards Building Grammars

The representational challenge of shape grammars for
architectural applications, which with few exceptions are two-
dimensional drawing grammars like the case study grammar
for Entelechy I, is communicating three-dimensional building
grammars that illustrate shape rules in space. One potential
way to translate shape rules from two-dimensions to three is
to simply extrude the planar rules. While this results in three-
dimensional “spatial” relationships, it only adds one new type
of information: height. While this may be all that is needed
for some rules, ultimately this does not add much to clarify
architectural relationships. Alternatively, the planar grammar
can be redefined in the process of translation and incorporate
formal information lost in the reduction to two-dimensional
representation. This is the approach taken in this effort to
rework the grammar for Entelechy I. The four stages ordering
the grammar as well as the conceptual intent of the shape
rules remain the same, but the shift in representation provides
opportunities for modification.

The process to translate shape rules from two-dimensions
to three is ideally facilitated by automated implementation.
For the work outlined here, the GRAPE engine was utilized
for translation, where the GRAPE (GRaph shAPE) plug-in for
C# for Rhino 5 is paired with graph grammars implemented
using GrGen.NET (Grasl and Economou, 2011). Within this
computational framework (Figure 3), the two-dimensional
drawing grammar of Entelechy I can be transformed into a
three-dimensional building grammar. The major effort in the
process is to rewrite two-dimensional shape rules as graph
grammars coded following C# conventions. As each rule is

written, it can be compiled through the graph rewriting system
Gr.Gen.NET and updated in the Rhino 5 plug-in. Compiled
rules can be procedurally applied in Rhino 5 to generate three-
dimensional geometry in the familiar design space of existing
software. After executing a rule set in the plug-in, the user is left
with a model that can be further manipulated and developed
by transformations using any existing Rhino tools. Once this
framework is setup, the main effort to code the grammar
can begin. Coding the rules is a trial-and-error process using
nodes, edges, labels and a variety of attributes to define graph
equivalents of shape rules. These rules are coded individually
and modeled after shape rules with both a left-hand and right-
hand-side. An example of this is shown in Figure 3. In this case, the
two-dimensional shape rule fills in the corners of the underlying
grid recursively until the rule no longer applies and a complete
three-dimensional grid is produced. The code for the rule shown
is constructed with alternatives so that the rule can complete
the initial grid both in a single level and for any additional levels
added vertically. To do this, there are two left hand sides to the
rule: the first looks for nodes in a diagonal relationship and the
second looks for L-shapes including two nodes stacked on top of
each other. For each left hand side, a right hand side to fill with
a subsequent node is written. Finally, the last part of the rule is
written to recursively apply the rule as many times as a match is
found. This allows the user to select the rule once and complete
the grid framework for all planar and vertical growth defined
before the rule is applied. In all, the process to code the shape
rules involves reworking and reevaluating the initial grammar
to add rules, subtract rules, combine rules, and transform them
based on the combined requirements of graph grammars and
resultant three-dimensional outputs.

Figure 2: Shape rules in four stages to articulate Entelechy I.

SI
GR

A
DI

 2
01

5

660

Figure 3: Diagram of the process: (a) two-dimensional shape rule; (b) C# coded rule; (c) three-dimensional implemented rule in Rhino 5.

Figure 4: Composite production of three-dimensional rules implemented in GRAPE for Rhino with the equivalent two-dimensional shape rule

illustrated in the center: (a) defines vertical growth; (b) completes an initial spatial lattice horizontally and vertically, (c) adds cylinders as figures

at intersections of the grid, and (d) completes the Boolean operation to define major and minor spaces.

GE
NE

RA
TI

VE
 S

YS
TE

M
S

661

Translating the grammar as an automated description
creates an interactive design tool for generating variations
of Portman’s domestic architecture that can be visualized
and utilized for a variety of purposes. The work so far nicely
illustrates this flexibility and its potential. Figure 4 shows the
translation of a series of two-dimensional shape rules of Stage
1 of the grammar to their equivalent three-dimensional rules
in the GRAPE for Rhino 5 plug-in. The freedom of the system
allows for many interpretations and uses within a familiar
CAAD environment where shape rules can be considered both
for their original application in the grammar and for useful
extension in other compositional pursuits. This work opens
up a set of possibilities for active shape grammars that can be
creatively applied, while also suggesting a process for testing
and reworking shape rules in an automated environment.

Discussion

Architectural composition is an active process that involves

working back and forth between representations that simulate the

varied relations of a final construction. Abstract elements are utilized

in this process of formation to map to requirements of the final form.

An initial abstraction is helpful to foreground the important aspects

of a particular design as well as to free the intuition to interpret them

in multiple ways. Conventional representations in two and three-

dimensions are abstract design tools utilized to calculate these acts of

composition although they can only partially capture the implications

of actual spatial construction. Instead, a layered process moving across

both two and three-dimensional representations is necessary for the

coordination required of an architectural design. These relations are a

key architectural act and are hierarchically ordered in any design based

on how they can resolve the design problem for a desired architectural

performance. No matter what criteria they consider (function, light,

circulation, systems, structure, etc.), these architectural relations are by

definition spatial. Shape grammars represent these spatial relationships

defined by architectural compositions as shape rules. Their simple

computational means utilizing shapes and visual rules are familiar to

architectural designers who use similar constructs to sketch and work

through the multiple design relations of any given project.

Architectural relationships necessitate coordination in three-

dimensional space. Where shape grammars aim to identify spatial

relationships of a design, they are challenged by the limits of their

traditional setup as two-dimensional drawing grammars in the context

of architecture. Here we have proposed one process to translate

from a two-dimensional drawing grammar to a three-dimensional

building grammar to describe John Portman’s architectural language

as expressed in Entelechy I. This work begins to address a process of

working from visual computation to symbolic computation and back

again in a productive way that suggests an expansion of potential

applications of shape computation. Shape grammar discourse in this

context could involve flexibility to rework, reinterpret, and apply

shape rules across varied contexts to foreground different design issues

in an automated CAAD environment.

In the specific context of John Portman’s work, this research aims

to explore shape grammars as a method of visually calculating both new

and existing designs by extracting the compositional information of a

single architectural work representative of design principles applied to

a larger, diverse corpus. Design logic across varied contexts can then

be formally outlined and explored constructively. Recent recasting

of shape rules and rule schemata (Economou and Kotsopoulos,

2014) emphasize the generous and often ambiguous formalism of

shape grammars (Stiny, 2006) as illustrative of the expressive and

productive possibilities that are currently underdeveloped within

shape computation discourse as a whole. A plural approach to shape

grammars is suggested as a method to explore their full potential as

tools to understand Portman’s formal contribution and suggest their

larger application in the pursuit of creative architectural design.

Acknowledgments

GRAPE (GRaph shAPE) is a plug-in written for C# for Rhino 5.

The graph grammars were implemented using GrGen.NET. We are

indebted to Thomas Grasl for his collaboration, thoughtful advice,

and continual support.

Reference
Duarte J, 2005. Towards the mass customization of housing: the

grammar of Siza’s houses at Malagueria. 30th eCAADe Conference

Proceedings. 347-380.

Economou A and Kotsopoulos S, 2014. “From Shape Rules to Rule

Schemata and Back.” in Design Computing and Cognition DCC’14. J.S.

Gero and S. Hanna (eds), Springer 2014, 419-438

Goldberger P, Portman J and Riani P, 1990, John Portman (L’Arca)

Grasl T and Economou A, 2011. “GRAPE: Using graph grammars to

implement shape grammars” in SimAUD 2011.

Grasl T and Economou A, 2013. From topologies to shapes: parametric

shape grammars implemented by graphs. Environment and Planning

B: Planning and Design, 40(5), 905-922.

Hoisl F and Shea K, 2011. An interactive, visual approach to

developing and applying parametric three-dimensional spatial

grammars. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, 25, 333-356.

Jameson F, 1991. Postmodernism or, the Cultural Logic of Late

Capitalism (Duke University Press, Durham)

Koning H and Eizenberg J, 1981. The language of the prairie: Frank

Lloyd Wright. Environment and Planning B. 8(3). 295-323.

Koolhaas R, Mau B and Werlemann H, 1998. S,M,L,XL (Monacelli,

New York)

Ligler H and Economou A, 2015. “Entelechy I: Towards a Formal

Specification of John Portman’s Domestic Architecture” in

Proceedings of the 33rd eCAADe Conference, Martens B., Wurzer

G., Grasl T., Lorenz W.E., and Schaffranek, R (eds), Volume 1, 445-452.

Portman J and Barnett J, 1976. The Architect as Developer (McGraw-

Hill, New York)

Sorkin M, 1994. Exquisite Corpse: Writings on Buildings (Verso, New York)

Stiny G and Mitchell WJ, 1978. The Palladian Grammar. Environment

and Planning B. 5(1). 5-18.

Stiny G, 2006. Shape: Talking and Seeing and Doing. MIT Press.

Trescak T, Esteva M, and Rodriguez I, 2012. A shape grammar

interpreter for rectilinear forms. Computer-Aided Design, 44(7), 657-67

