
SIGraDi 2017, XXI Congreso de la Sociedad Ibero-americana de Gráfica Digital
22 -24 November, 2017 – Concepción, Chile.

Python on the Landscape of Programming Tools for Design and
Architectural Education

Python on the Landscape of Programming Tools for Design and Architectural Education

Alexandre Barrozo do Amaral Villares
FEC-Unicamp, Brazil
abav@lugaralgum.com

Daniel de Carvalho Moreira
FEC-Unicamp, Brazil
damore@fec.unicamp.br

Abstract

Currently most professional modeling and computer graphics software packages embed a scripting language. This is an early
report on collecting data about software applications and coding tools geared towards the educational environment, preparing a
listing for further evaluation and analysis of platforms. An increase in the adoption of Python as the embedded scripting syntax
in many established tools can already be recognized, therefore the creation of educational materials on Python for design and
architectural education merits further attention. Other insights on the educational potential of the available tools might be gained
by advancing the data collection and evaluation work.

Keywords: Education; Design; Architecture; Programming; Python.

Introduction

Nowadays most CAD and 3D modeling software packages
used by architects and designers embed a scripting language,
and they have also been used as introductory tools to teach
coding from early on. Mark Burry in Scripting Cultures:
Architectural design and programming (2011), identifies
different uses of computer programming, like productivity aids
and exploratory code, as well as describes his teaching
experience using scripting tools embedded in CAD software:

"[...] Once I had a handle on this coding caper, I could see then
that I could attempt to transcend whatever limitations software
might impose on me as a designer, guiding this electronic
instrument with the same authority I applied to my pen and
compass. [...] The two problems that had encouraged me to
step outside my professional comfort zone of compliant
passenger to become front-seat driver were stimulated by a
need to rid myself of repetitive work [...]. Very quickly, however,
I could see that a prime motivation for coding on top of
software was to augment my design practice by allowing me
to work in ways hitherto impractical, and so scripting became
a medium of experimentation ahead of productivity gain. [...]
Within a year, scripting had infiltrated my teaching, and in 1993
I instituted an elective course in which the participants had to
come up with two pieces of code: a productivity tool (this was
to appease my senior CAD teaching colleagues and satisfy the
school’s curriculum priorities) and a design experimentation
script. [...]"(p.29)

Burry also compiled a list of programming tools used by
several correspondents. It included textual scripting
languages, like VBA, and tools with node diagrams, like
Generative Components, embedded on mainstream
computer graphics applications, like AutoCAD, as well as

stand alone development environments, like Processing (Reas
& Fry, 2011).

Collecting and organising information about programming
languages embedded in applications used by designers and
architects, and also coding tools with educational aim, could
be useful for teachers who need to choose suitable tools and
supporting resources. Others researchers in the field of design
and architectural education might engage in further
investigations like comparing platforms (Celani & Vaz, 2012)
and analyzing trends.

Resilience Design is a contemporary aspect of design that
might greatly benefit from model simulations, tackling design
complexity and other exploratory strategies that are most
effective through engagement in coding by design
practitioners.

Methods

The records started to be collected in 2015 and the following
selection criteria was adopted:

• Drawing or 3D modeling software that embeds a
scripting language on the user interface or allows
automation with a very limited number of steps
between programming and code execution.

• Tools aimed at teaching programming in a visual or
graphic context.

Software Development Kits (SDKs), usually provided by
mainstream computer graphics software houses, mostly
offering C or C++ resources, were excluded. These tools are
aimed at professional programmers who wish to create

SIGraDi 2017, XXI Congreso de la Sociedad Ibero-americana de Gráfica Digital
22 -24 November, 2017 – Concepción, Chile.

plugins, and are not immediately accessible to designers and
architects, the main application end users.

The following fields are being recorded:

• Evaluation level: 'Yes' means the authors saw first
hand the tool being used or used them themselves,
'partial' means some documentation of use was
consulted at the time of entry, 'no' means only a
description of the tool was available, possibly
provided by a correspondent;

• OS: Describes if the tool will run on MacOS, Windows
and/or GNU/Linux;

• License: 'FOSS' (Free/Libre and Open Source
Software), or 'Proprietary', and in this last case,
reference to, if available, any educational license,
free or at reduced cost;

• Host/IDE: The main CAD, modelling, game
application or Integrated Development Environment
to be used. (i.e. SketchUp, Rhinoceros, Minecraft, or
Processing IDE);

• Language/Library: Other software components or
libraries that enable the programming interface. (i.e.
Ruby, Grasshopper, ComputerCraftEdu, or P5*JS);

• Syntax: An attempt to group tools by language syntax
features (i.e. Ruby, nodes, blocks, or JavaScript).
'Nodes' groups visual scripting tools like Generative
Components, Grasshopper and Marionette). 'Blocks'
groups programming interfaces similar to Scratch;

• Main Uses: A brief description of uses encountered;

• Official Site: Attempt to locate an online resource
regarded as the official source of the tool;

• Recommended reference: Attempt to locate useful
reference resources.

Many entries have not yet been evaluated, and the evaluation
and categorization methods themselves require further work.
It can be noted there is some overlap between categories due
to the way entries have been recorded. The research would
benefit from clearer criteria for listing platforms with several
scripting and syntax options (at this point some are listed as
separate entries, others grouped together).

Results

The preliminary results are presented in Table 1, also available
as a CSV table published on GitHub inviting collaboration by
means of corrections and additions:
<https://github.com/villares/Resources-for-teaching-
programming>

At the time of this writing 43 tools have been listed, of which
32 at least superficially investigated, of which at least 20% (7
of 32) have substantial educational aims.

A preliminary look at this landscape seems to indicate strong
presence of Python as an embedded language or option in
programming tools, about 40% (18 of 43 listed, 14 of 32
partially reviewed entries), followed by visual/node based tools
(like GC, Dynamo and Grasshopper) about 15% (5 of 32), Lua
and BASIC-related (like GLD and VB.NET) about 15% (5 of
32).

Discussion

There seems to be a trend of adoption of Python as an
embedded scripting language. Python was added to
Rhinoceros, arguably as replacement of RhinoScript, added to
Vectorworks replacing VectorScript (a Pascal based
language) and similarly Python was added to Maya, 3D Max
and Cinema 4D.

On the Free/Libre and Open-Source category, Blender and
FreeCAD have strong Python integration from the start.
Rosetta, a CAD controlling extension used within DrRacket
IDE, can now be accessed via Processing or Python as well
(Caetano & Leitão, 2016; Ramos & Lleitão, 2014). Recently
the Processing Foundation incorporated the Processing
Python Mode as an official project (Parrish, 2016).

It can be noted that the Python programming language has
grown in use at introductory courses in Computer Science and
Engineering (Guo, 2014) and many other educational
environments. According to Tollervey (2015), Python
popularity in education might be explained from its origins on
ABC, designed for teaching and aimed at nonprofessional
programmers as well as on the open-source and extensible
platform ecosystem “capable of simply and effectively
addressing many different types of computational problems”.

This leads to the preliminary conclusion that documenting
Python use, and related software tools, as well as the creation
of educational materials on Python for design and architectural
education merit further work. It could be investigated, as
further research, if knowledge of Python can be usefully
transferred by students between platforms and tools.

Other insights on the evolution of the available scripting tools
might be expected to follow from the accumulation of detailed
data, it is mostly the intention of this work to provide a useful
database for other researchers and specially teachers willing
to explore further those tools.

SIGraDi 2017, XXI Congreso de la Sociedad Ibero-americana de Gráfica Digital
22 -24 November, 2017 – Concepción, Chile.

Table 1: Data collected up to May 2017 (part 1 of 2)

SIGraDi 2017, XXI Congreso de la Sociedad Ibero-americana de Gráfica Digital
22 -24 November, 2017 – Concepción, Chile.

Table 1: Data collected up to May 2017 (part 2 of 2)

SIGraDi 2017, XXI Congreso de la Sociedad Ibero-americana de Gráfica Digital
22 -24 November, 2017 – Concepción, Chile.

Acknowledgments

The authors would like to thank the many correspondents who
have contributed to this research over the last two years.

References

Burry, M. (2011). Scripting cultures: architectural design and
programming. Chichester: Wiley.

Reas, C., & Fry, B. (2011). Processing Architecture. Perspecta, 44,
153–202. https://doi.org/10.2307/41662956

Celani, G., & Vaz, C. E. V. (2012). CAD Scripting and Visual
Programming Languages for Implementing Computational Design
Concepts: A Comparison from a Pedagogical Point of View.
International Journal of Architectural Computing, 10(1), 121–137.
https://doi.org/10.1260/1478-0771.10.1.121

Guo, P. (2014). Python is now the most popular introductory teaching
language at top us universities. BLOG @ Communications of the
ACM, July, 47. http://cacm.acm.org/blogs/blog-cacm/176450-
python-is-now-the-most-popular-introductory-teaching-language-
at-top-us-universities/fulltext

Ramos, P. P., & Leitão, A. M. (2014). Implementing Python for
DrRacket. In M. J. V. Pereira, J. P. Leal, & A. Simões (Eds.), 3rd
Symposium on Languages, Applications and Technologies (Vol.
38, pp. 127–141). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.
https://doi.org/10.4230/OASIcs.SLATE.2014.127

Tollervey, N. (2015). Python in Education. Sebastopol, CA: O’Reilly
Media. Retrieved from
http://www.oreilly.com/programming/free/python-in-education.csp

Caetano, I., & Leitão, A. M. (2016). Using Processing with
Architectural 3D Modelling. Herneoja, Aulikki; Toni Österlund and
Piia Markkanen (Eds.), Complexity & Simplicity - Proceedings of
the 34th ECAADe Conference - Volume 1, University of Oulu,
Oulu, Finland, 22-26 August 2016, Pp. 405-412. Retrieved from
http://papers.cumincad.org/cgi-
bin/works/Show?ecaade2016_199

Parrish, A., Fry, B., & Reas, C. (2016). Getting Started with
Processing.py: Making Interactive Graphics with Processing’s
Python Mode (1 edition). San Francisco, CA: Maker Media, Inc.

