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Abstract   

Knowledge of geometric properties of surfaces is crucial for resolution of many 

manufacturing problems. Developability is an important feature of a surface that allows its 

manufacture from a flat "strip" of a "flexible" and "non-deformable" material. Digital 

fabrication technologies and parametric design tools, based on knowledge of geometry, are 

changing designer way to think. Our research in the field of non-developable surfaces 

fabrication move from paneling to "kerfing". This technique allows to transform a rigid 

material in a flexible one. The main problem to solve is how to cut the flat shape to obtain the 

design surface.  

Keywords: Non-developable surfaces; Developable surfaces; Shape grammar; Parametric design; 
Kerfing.    

INTRODUCTION 

Knowledge of geometric properties of surfaces is crucial 

for the resolution of many manufacturing problems. 

Developability is an important intrinsic property of a 

surface, because it allows its manufacture starting from a 

flat "strip" of a "flexible" and "non-deformable" material.  
Digital fabrication technologies are evolving and becoming 

more and more widespread. Knowledge of fabrication 

methods available and parametric design tools, based on 

geometry, are changing the designer way to think. 

Advances in this field promotes the experimental use of 

new materials but also the innovative use of traditional 

materials, such as wood. 

Our research, in the field of wooden curved surfaces 

fabrication, move from developable surface manufacturing 

and from "paneling" to "kerfing". This technique consists 

in transforming a rigid material in a flexible one and the 

problem to solve is how to cut the flat shape to obtain the 
design surface. This is a quite simple question to solve for 

a developable surface but it is a very complex problems to 

address for double curvature surface manufacturing.  

METHODOLOGY 

In our research, we can summarize the methodological 

approach for wooden curved object manufacturing that 

moves from theory to practice:  

- definition of the theoretical framework, classification of 
the kerf bending patterns, and analysis of different 

approaches (patterns uniform distribution vs. patterns 

optimized distribution); 

- experiments for single curvature surfaces manufacturing 

(k=0 developable tangential); 

- experiments for doubly curvature surfaces manufacturing 

(k<0 negative curvature); 

- experiments for ruled doubly curvature surfaces 

manufacturing (free form); 

- conclusions, analysis of the results and formulations of 

new hypotheses; 

- case study: wooden curved objects manufacturing using 
kerfing technique. 

 

GEOMETRIC APPROACH 

Geometric genesis of surfaces and knowledge of their 
properties are crucial for solving many problems, both 
constructive and measurement. A developable surface 
can be manufactured starting from a flat "strip", using a 
flexible and non-deformable material. This is a very 
important feature of the surface. Geometry studies the 
properties that don't change and, therefore, the shape of 
the "strip" to obtain a certain configuration, after a series 
of rigid movements.  
 
Differential classification of surfaces, introduced by 
Leonhard Euler (1707-1783) and subsequently used by 
Monge, allows us to group surfaces according to the 
definition of curvature, which will be precisely defined by 
Carl Friedrich Gauss in 1902 (Gauss 1902), in four 
categories: surfaces with zero curvature, surfaces with 
positive curvature, surfaces with negative curvature and 
surfaces with variable curvature.   
The curvature of a curve in P is k, where k = 1 \ r and r is 
the radius of the osculating circle of the curve, we can 
define the main sections of a surface, the sections of the 
surface, obtained with planes passing through the normal 
to the surface in P, with minimum and maximum 
curvature.  
 

Figure1: Gaussian curvature: osculating circles. 
Difference between developable (k=0) and not developable 

surfaces (k<0, k>0). Source: Authors. 

http://context.reverso.net/traduzione/inglese-italiano/Knowledge+of
http://context.reverso.net/traduzione/inglese-italiano/Knowledge+of
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 As we know, Gaussian curvature is the product of the two 
main curvatures, so it can be positive, negative or equal to 
zero: it is positive when the osculating circles of the main 
sections are on the same side of the tangent plane, 
negative when they are on opposite sides, zero when one 
of the two main sections is a straight line.  
 
The surfaces with zero curvature are specific ruled 
surfaces, also called developable (Figure 1). 
 
DEVELOPABLE SURFACES 

A developable surface is a surface for which every 

generatrix intersects the generatrix infinitely close, then: 

- when they intersect on curve c (edge of regression), we 

have tangent developable; 

- when they intersect in a point V (the edge of regression 

is a point), we have a conic surface; 

- when they intersect at infinity, we have a cylindrical 

surface. 

For this reason, we can group developable surfaces in 

three groups: conical surfaces, cylindrical surfaces and 

tangential surfaces. As we know, you can obtain a tangent 

developable using the tangents to a generic  curve c, the 

directrix c is called the edge of regression (Migliari 2009, 

pp. 213-218).  

 
We can easily generate cylindrical or conical surfaces 

using a 3D modeling software, extruding the curve in one 

direction or to a point. 

It's more complex generating a tangential developable.  

 
In Descriptive Geometry a tangential developable is 
generated by motion of tangent line on a spatial curve (the 
edge of regression). Using algorithmic modeling we have 
developed a definition to construct developable ruled 
surfaces using a general spatial curve. This spatial curve 
can be imported by Rhino or parametrized in relation to 
specific needs.  
 
Dividing the assigned spatial curve (the edge of 
regression) in n parts, our algorithmic definition allows to 
generate the surface by constructing n lines (generatrix of 
the surface) passing through the n points and tangent to 
it. It is possible to obtain infinite developable surfaces by 
modifying the length of the generatrix and the edge of 
regression. This surface may be cut to define the edge 
which is otherwise automatically generated as a function 
of the generatrix length (Figure 3). 

 

 

Figure 2: developable surfaces: conical surfaces, cylindrical 

surface, tangential developable. Source: Authors. 

 

 

Figure 3: tangential developable: developable helicoid, generic 

developable. Source: Authors. 

A tangential developable specializes if the edge of 

regression is a cylindrical helix: the surface generated by 

the motion of a tangent line to a cylindrical helix is a 

developable helicoid.  

The case of the developable helicoid is the simplest, in 

fact, if the edge of regression is a cylindrical helix, in order 

to generate the surface we can construct the tangent at a 

point P and then make it move along the helix.  

In this case, generative modeling is powerful tool, useful 

not only for reiterating procedures but for verifying 

theories. In fact, a tangential developable can be unrolled 

with some unavoidable approximations, as the two 

consecutive generatrices intersect each others on the 

edge of regression only in an infinitesimal neighborhood, 

with n tending to infinity.  

We have realized as a case study two portion of helicoid 

that can always be developed with the aim of building a 

wooden lamp. 

WHAT 'S THE SHAPE TO CUT? 

One of the main questions to manufacture a 3D surface 

from a planar panel is to find the 2D shape to cut. 

If we have to fabricate a developable surface it is always 

possible but, if we have to fabricate a complex surface, 

we have to decide how to determinate its approximate 

develop. It's very easy to find conical or cylindrical 

surfaces development using traditional methods or digital 

tools, on the contrary it is very difficult to find the unrolled 

shape of a tangent developable surfaces. Using 3D 

modeling, there is a command that is able to automatically 

unroll both conical surfaces and cylindrical surfaces.  

https://www.mathcurve.com/surfaces.gb/devellopabledestangentes/devellopabledestangentes.shtml
https://www.mathcurve.com/surfaces.gb/devellopabledestangentes/devellopabledestangentes.shtml
https://www.mathcurve.com/surfaces.gb/devellopabledestangentes/devellopabledestangentes.shtml
https://en.wikipedia.org/wiki/Curve
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Figure 4: developable helicoid: the shape to cut. Source: 

Authors. 

 Figure 5: Differential calculus: how to develop a tangential 

developable. Source: Authors. 

The method for finding the unrolled shape of a tangential 

developable is more complex, in this case differential 

geometry application is evident.  

Monge uses the principles of differential calculus to study 

the properties of the developable surfaces (Migliari pp. 

106-108). Each developable surface  can 

be flattened onto a plane without distortion and, in a 

limited region, without overlapping.  

The unrolled shape of the surface generated by the infinite 

tangents to a space curve is obtained by considering n 

generatrices and flattening onto plane the surfaces 

included between two consecutive generatrices.  Two 

consecutive tangents, t1t2, can be considered coplanar if 

they are very close, then: if we rotate t2t3 around t2, and 

we repeat for the following tangents we can find the 

unrolled surface.  

The unrolled surface depends on the edge of regression.  
Using algorithmic modeling first, we have done a tool that 
allows to develop a developable helicoid and then we 
have done any developable tangential.    
We know that helixes on developable helicoid turn into 
concentric circles, for this reason the edge of regression 
will turn into a circle whose radius depends on R, the 
radius of curvature of the helix. To draw the unrolled 
shape of the developable helicoid, it's enough to fix the 
length of the assigned generatrix (for example AB) on the 
helix development and drawing a concentric circle with 
radius OB (Figure 4).  

Starting from this theoretical framework and using a 

generative algorithm in Grasshopper, we have developed 

a method that allows to find the unrolled shape of any 

developable tangential. 

If we divide the edge of regression into n parts and we 

consider n tangents (generatrices of ruled surface) we 

have that two consecutive tangents intersect on the edge 

of regression. This is true only in a small, infinitesimal 

neighborhood. In fact, if we divide the edge of regression 

into n parts and we consider two successive tangents, t1 

and t2, from points 1 and 2, we define the non-flat 

quadrilateral A12B.  If we extend B2, it intersects the A1 in 

the point 2* (Figure 5). Therefore, we can construct the 

flat triangular face A2*B. In the same way, we extend D3, 

we have the B3*D triangle, thus the surface can be 
divided and approximated in the triangles faces: A2*B, 

B3*D, D3*E, D4*E…  It is true when n go to infinity, so the 

point 2 goes to point 1, 3 to 2 …. We can unroll the 

surface composed by n triangular faces. The 

approximation of the unrolled surface obviously depends 

on n. We can evaluate it comparing the metric values of 

the 3D surface, the length of the edges and the area, with 

the unrolled shapes that we have constructed (Figure 6). 

It may happen that the configuration of the surface is such 

that portions of unrolled surface overlap with the others, in 

these cases, it is necessary to divide the design surface 

into parts in order to manufacturing it.  

MANUFACTURING A DOUBLY CURVED SURFACE 

There are two different approaches to define approximate 

develop of non-developable surface:  first we can design 

the surface and then we can find the flat shape to 

manufacture it, or we can design 3D surface morphing a 

planar surface. 

We can divide and approximate the 3D surface in order to 

cover a complex shape by developable strips, which can 

be unfolded to the plane in an isometric way, without 

stretching or tearing (Pottmann, 2015). In this way we can 

fabricate 3D complex shape using materials that can be 

bent in one direction or rigid material with no possibility of 

being bent at all.  

Figure 6: Generative algorithm in Grasshopper to find the 

unrolled shape of any developable tangential. Source: Authors. 

https://en.wikipedia.org/wiki/Flatness_(mathematics)
https://en.wikipedia.org/wiki/Plane_(mathematics)
https://en.wikipedia.org/wiki/Distortion
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Figure 7: Hyperbolic paraboloid: approximate develop. Source: Authors. 

In our research we have considered materials and 

manufacturing techniques that can solve approximation 
problems allowing non isometric transformation of the 

panel thanks to "cuts", kerfing, or "overlapping", bending. 

The kerfing technique in addition to making the flexible 

panel can also make it deformable, this makes it possible 

to manufacture double curvature surfaces using this 
technique. 

Our tests to unroll the developable helicoid and to unroll a 

tangential developable is the starting point of our research 

in progress about manufacturing of non-developable ruled 

surfaces. Our current experimentation regards non-

developable surfaces and in particular we are dealing with 

the problem of identifying the approximate unrolled 

surface according to the different ways of cutting the 

panel. 

 
We can find approximate unrolled shape of non-
developable surfaces useful for certain applications. 
We have studied non-developable surfaces and in 
particular the case of hyperbolic paraboloid, to highlight 
some of the problems and to define some possible 
approaches to transform a non-developable surface into a 
flat surface that, with better approximation, is able to 
preserve the characteristics of 3D surface. 
One of main research goal is to highlight, through the 
applications, how these approaches can influence the 
figurative outcome and the manufacturing process.  
 
The hyperbolic paraboloid is a ruled surface that may be 
generated by a moving straight line that is parallel to a 
fixed plane. It is a non-developable surface because two 
consecutive generatrices are always skew lines and 
Gaussian curvature is always negative. 
There are several tools that allow you to automatically 
obtain the approximate unrolled shape of a non-

developable surface: using Rhino the command "smash" 
and the command "squish”. 
 
The critical analysis of the results obtained using 3D 
modeling software is part of our experimentation. 
Using the "smash" command we can automatically 
generate an approximate unrolled shape for a double 
curved surface but using this flat shape we can 
reconstruct the real 3D shape only if we use a deformable 
material. The "squish" command uses a different 
algorithm, performs the smoothing of meshes or 3D 
NURBS surfaces, modifying the starting area, allowing the 
display and control of the local compression and 
stretching zones.  
 
Applying the "smash" and "squish" commands to the 
hyperbolic paraboloid piece, used in our tests, we 
obtained different shape (Figure 7). We have done these 
observations based on results: the area changes 
compared to the real one and the generatrices of one of 
the two groups deform themselves. It follows that it will 
necessarily be breakings and / or overlaps to transform 
the flatten shape into 3D designed shape. In fact, if the 
generatrix AD becomes curve, it turns into the curved 
edge A*D*, this must be deformable, therefore the cuts 
must be made to allow the curve A*D* to assume the 
configuration straight of the designed shape. Similarly, if 
the generatrix AB is deformed, it will be necessary to 
allow that the curve A’B is able to transform into the 
straight segment AB (Figures 7 and 9). 
 
We tested different methodologies to simulate deformation 
according to kerfs made, using generative modeling. Our 
goal is to identify processes and to develop tools to define 
the approximate flatten shape of a double curvature 
based on the knowledge of geometric properties. 
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Figure 8: kerfing three different ways of. Source: Authors. 

KERFING 

The kerfing technique consists in subtracting material in 

some points of the panel in order to improve its flexibility. 

The maximum radius of curvature, that the panel can 

reach, depends on the material, the panel thickness, the 

type of kerf and the different distribution ways on the 

panel in relation to the curvature of the design surface. 

The main goal of our research was to analyze and to 
classify the different kerf pattern geometries in relation to 

the nature of the surfaces and especially to the Gaussian 

curvature. We've used 2 and 3mm ply to make our tests. 

We have classified the types of kerf pattern according to 

three different ways to cut the panel (figure 8): 

a) cutting on one side; 

b) cutting through the panel; 

c) cutting on both sides. 

 

The experimentation is part of a broader research that has 

involved the study of different kind of "cutting through kerf" 

in relation to the Gaussian curvature of the designed 

surfaces. 
 

Our tests show that there are some problems to 

manufacture double curvature using many of the analyzed 

patterns. 

We have grouped the " cutting through kerf " in four main 

groups (Munoz 2012): spiral kerf, fringe kerf, zig zag kerf 

and slit kerf (Figure 8). 

1 spiral kerf: it is single or double kerf from the center to 

the border, it is continuous and it makes the panel flexible 

in orthogonal direction of the plane. 3D shape depends on 

the cut line. 

2. fringe kerf: a series of kerfs, distributed on the surface 

according to a geometric rule, come up to the edge and 

break it. Flexibility depends on kerfs length and geometric 

rule.  

3. zig zag kerf: a series of kerfs that start from the edge of 

the panel, they are staggered. Flexibility achieved 

depends on frequency, overlapping of the kerf and on 

panel thickness. The distance between kerf and the kerf 
shape is very important for furniture design. Flexibility can 

be multidirectional.  

4. "slit" kerf: they are narrow kerfs that follow a lattice 

order or pattern. Generally, the plan becomes flexible 

along the direction of the kerfs and this flexibility can be 

controlled by providing sectors not affected by kerfs or 

with different densities. The empty space is very important 

in this case, because otherwise the contact of the edges 

is a limit.  

 

First we studied the geometry of the kerf and then we 

studied the different ways of the pattern distribution on the 
panel, identifying two different approaches: uniform 

distribution or optimized distribution (Figure 9).  

 

The studies carried out show that the maximum radius of 

curvature, that a panel of a given thickness can reach, 

depends on the type of cut, but also on the pattern 

distribution on the surface. 

 

Therefore, we have identified some fundamental variables 

and, through the use of parametric representation tools, 

we have fabricated a series of prototypes using a slit 

pattern uniformly distributed on the panel in order to 
define the type of cut according to the maximum curvature 

of the designed surface. 

 

The kerfing technique increases the flexibility of the panel 

by subtracting material and modifying its resistance. 

The goal of the most innovative research in this field is to 

define processes able to find optimized solutions: "cut 

only where it is needed" to get the designed surface. 

 

We have analyzed some fundamental case studies to 

understand the different ways of kerfs pattern distribution 

to optimize surfaces fabrication with variable curvature. 
 

Figure 9: Kerfing: different kind of kerf and different approaches. Source: Authors. 
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Figure 10: Lamp prototype 1 - developable surface - parts of developable helicoid. Tests manufacturing problems using kerfing 

technique and shadows design. Source: Authors. 

 

The Wooden Waves, the installation by Mamou-Mani 

Architects and Buro Happold Engineering, is an 

emblematic example: the result of experimentation on the 

slit pattern distributed and sized according to the 

curvature of the designed surface, that is variable (Figure 

9). 

 

PATTERN DISTRIBUTION 

Pattern design process starts from grid layout which has a 

predefined size. A single geometry is overlapped on 

intersection points of grid layout as a one- or two-

dimensional array organization (Güzelci 2016). 

Variables like size of pattern units, distance and direction 

between pattern elements, thickness of the material can 

be modified to explore the strength of the material.  

We tested some pattern using parametric tools and 

defining  assumptions and variables  in relation to kerf 

technology. With regard to this question we  have 
considered  the actual machines used for kerfing. In 

particular,  we are analyzing the difference between  laser 

cut and CNC milling, and how they may influence the 

design process.   

We have designed our experiment using 2 mm fir plywood 

and 2 mm MDF, the goal is to know what the maximum 

bending limit of a material is according to kerf patterns 

geometry and how to manufacture same 3D shape using 

material with different thickness. 

In our case study manufacturing techniques are used as a 

design tool. Our aim is to test this methodological path to 

explore bending behavior of the material using kerfing 
technique.   

The results of our tests show us it is not the subtraction 

operation itself that increases the bending ability of the 

surface, but it is lay out pattern distribution that might 

increase the flexibility. In that way the planar surface 

begins to perform anisotropic behavior (Güzelci 2016).  

We have tested two patterns and their variations to study 

the relations between patterns geometry and material 

property and two different kind of kerf pattern, zig zag kerf 

and slit kerf.  

The shape is the start point of our research and not a 

casual result of trials patterns, among many tests to put 

on the plane one pattern or mixed patterns to manufacture 

an assigned doubly curvature surface.  

To do that we have produced several prototypes. 

We have considered two different approaches:  

- pattern distribution on surface using a grid layout on 

straight line generatrices; 
- pattern distribution based on curvature and  geometric 

properties of 3D surface. 

In this paper we show two case studies using ruled 

surfaces: 

lamp prototype 1 - developable surface composed by 

parts of developable helicoid; 

lamp prototype 2 - non-developable ruled surface 

composed by parts of hyperbolic paraboloid. 

 

lamp prototype 1 - developable helicoid 

To distribute the cutting pattern on the 3D surface, we 

have created a grid using the straight generatrices which 
we have divided into m parts (variable) and allow us to 

modify the grid. 

We used Paneling Tools for Grasshopper to generate 

patterns on curved surfaces. The Paneling Tools "morph 

2D" tool allows you to morph a 2D curve onto a 3D 

surface. It does this by dividing a surface with a grid. Then 

it stretches a pattern into the frames created by the grid.  

Using algorithms we have distributed the pattern on the 

surface and on the unrolled surface. In this way we have 

manufactured the pieces (figure 10).  

We are working how to turn our tests into a usable 

prototype and then into a design product. We are 
designing how to assemble a complex 3D object from 2D 

pieces, in a simple way.  First of all, we are studying the 

relationship between geometry, kerfs and shadows. We 

know that the developable helicoid sections by planes 

orthogonal to cylindrical helix axis are the involutes of the 

cylinder that contains the helix, therefore we can obtain 

these shadows up and down of the lamp, on the roof and 

on the floor (Figure 10).  

http://context.reverso.net/traduzione/inglese-italiano/by+defining
http://context.reverso.net/traduzione/inglese-italiano/with+regard+to
http://context.reverso.net/traduzione/inglese-italiano/In+particular
http://context.reverso.net/traduzione/inglese-italiano/In+particular
http://context.reverso.net/traduzione/inglese-italiano/geometric+properties
http://context.reverso.net/traduzione/inglese-italiano/geometric+properties
http://www.food4rhino.com/project/pt-gh
https://www.mathcurve.com/courbes3d/developpante/developpante.shtml
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Figure 11: Lamp prototype 2 - non- developable surface - using parts of hyperbolic paraboloid. Approximate develop and pieces 
shaping. Source: Authors. 

 
We are addressing some problems linked to 
manufacturing technologies.  

lamp prototype 2 - hyperbolic paraboloid 

A hyperbolic paraboloid is a doubly ruled surface 

generated by motion of a straight generatrix on two 

straight directrices. The directrices are parallel to the 
same plane, the first plan-directer, and also the 

generatrices are parallel to the same plan, the second 

plan-directer. The main feature of hyperbolic paraboloid is 

to have two group of straight generatrices. 

The hyperbolic paraboloid it isn't developable but, using 

the "smash" command in Rhino, we can automatically 

generate two approximate unrolled shapes for a double 

curved surface. We have used one of these to 

manufacture our lamp prototype.  

We have created a grid using one of generatrices groups 

and we have distributed slit kerf pattern using Panneling 

Tools (Figure 11).   
 

Our lamp prototype is composed by four pieces of 

hyperbolic paraboloid and two elements to connect them. 

It is very important designing how to connect each piece 

and how to shape them. It is a very complex work 

transform the 2D approximate develop into 3D design 

shape in the case of doubly curved surface.  

If you have to bend only in one direction you have only to 

make flexible the panel. In fact, when you shape a single 

curvature object you have to force the piece only in one 

direction, instead, if you have to bend a negative double 

curvature object you have to bend in two opposite 
direction, thus there are stresses that tend to return 3D 

shape into 2D shape.  

 

Therefore, designing how to connect each piece it is a 

very hard work. 

DISCUSSION 

Kerfing is the act of cutting a series of kerfs (cuts) in a 
piece of wood in close proximity, so the wood can be 
curved.  

Kerf is defined as the width of material that is removed by 
a cutting process. It was originally used to describe how 
much wood was removed by a saw, because the teeth on 
a saw are bent to the side, so that they remove more 
material than the width of the saw blade itself, preventing 
the blade from getting stuck in the wood. When talking 
about CNC shape cutting with typical cutting processes, 
kerf is the width of material that the process removes as it 
cuts through the plate. Over the years some people use 
the word “kerf” generally referring to cut for bending but 
now it should only be used when talking about the actual 
cut width. Each cutting process removes a different 
amount of material, or kerf. The more precise processes, 
like waterjet and laser, remove a smaller amount of kerf, 
which is one of the reasons they can be more precise. In 
our research we have address the relationship between 
"kerf" of the laser and the design of our objects.  

As a matter of fact that any areas in our design where cut 
lines come closer than 0.5mm together could burn away 
entirely (Figure 10). Any details narrower than 1mm are 
likely to be very fragile and in some cases can cause the 
material to warp whilst cutting. As a benchmark, we think 
that minimum cut widths be no smaller than the 
corresponding thickness of the material. We can go 
smaller but this can make our pieces very fragile. 

We have corrected our first prototypes of developable 
helicoid using pattern distribution on our grid in order to 
respect this rule. 

https://en.wikipedia.org/wiki/Doubly_ruled_surface
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Figure 12: tests for morphing a grid using curvature. Source: Authors. 

 

RESULTS 

The aims of our research are:  
 - analyzing the relationship between the curvature of 
surfaces and kerfing techniques;  
- testing different ways to optimize the design of kerf 

bending patterns to make flexible a rigid materials; 

- testing different ways to manufacture 3D surface from 
2D panel; 

To do that we answered these main research questions:  

- How do you make wood more flexible?  

- How do you manufacture a double curvature surface 

from a flat panel? 

- How do you choose the best pattern for manufacturing 

your wooden furniture design? 

We have fabricated some tests and we are working to 

manufacture usable prototype made by parts of ruled 

surface (developable and not-developable).  

CONCLUSIONS 

We have presented methods for manufacture design 

objects using kerfing technique. Our approach is based on 

geometric knowledge of ruled surface and pattern 

distribution using a grid on straight generatrices.  As we 
have seen, in the cases of developable surface that we 

have manufactured, developable helicoid, pattern density 

automatically achieves the surface curvature.  

It isn't true for doubly ruled surfaces.  We are studying a 

technique for applying the pattern based on surface 
curvature, measuring principle curvature in each direction, 

then morph a grid along two axis rather than just one. Our 

method is illustrated by means of different examples, 

some of which correspond to existing work in kerfing. We 

have shown how to morph a grid along one axis and how 

to apply the pattern density to achieve the surface 

curvature. 

The kerfing technique in addition to make flexible panel 
can also make it deformable, this makes it possible to 
manufacture double curvature surfaces using this 

technique. Our tests to unroll the developable helicoid and 
to unroll a tangential developable is the starting point of 
our research about manufacturing of non-developable 
ruled surfaces (k<0 negative curvature) and the shape to 
cut. 
From our tests we think that the best way for doubly ruled 

surfaces manufacturing is the slit kerf pattern, distributed 

on a grid made using the straight generatrices. 

Our future studies are in positive curvature surface 

manufacturing, k>0, and in particular we are dealing with 

the problem of identifying the approximate unrolled 
surface according to the different ways of cutting the 

panel.  

We are doing tests using a pattern inspired by the works 

of Ron Resch, and its optimized distribution using more 

than one direction (Loyola 2017) in relation to Gaussian 

curvature. 
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