
 

 

1 

 
xxii congresso da sociedade 

iberoamericana de gráfica digital 
22th conference of the 
iberoamerican society  

of digital graphics 

07|08|09|novembro|2018 
iau usp | são carlos | sp br 

 

 

Thermal Comfort Clustering; Climate Classification in 
Colombia 
  

Roland Hudson 
Universidad de Los Andes | Colombia | r.hudson@uniandes.edu.co 

Rodrigo Velasco 
Universidad Piloto | Colombia | rodrigo-velasco@unipiloto.edu.co 

    

Abstract   

Our goal is to develop a climatic classification system that extends understanding of human 

comfort and guides the design of buildings to provide greater thermal comfort to occupants. 

We propose that using k-means clustering with multivariate climate data a classification 

system can be defined to objectively represent comfort zones in the tropics. Our study 

focuses on Colombia, but the approach extends to other countries located in the tropics. 
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INTRODUCTION   

The climate of a region is a key determinant of the 

functional requirements to be considered in the design of 

buildings. Understanding a site’s climatic characteristics 

indicates design strategies that can define comfortable 

living conditions inside a building. Conditions in tropical 

regions are characterised by daily variations whereas at 

higher latitudes seasonal variation is the dominant 

characteristic. Understanding tropical climates is difficult 
due to a paucity of data but also because studies on 

tropical climates and design strategies in published 

literature are based on approximations developed for 

higher latitudes. The scarcity of data and appropriate 

design strategies means basic low-energy design 

approaches (Olgyay & Olgyay, 2015) (Givoni, 1981) are 

poorly understood and underutilized in the tropics. 

Two independent approaches to understanding comfort 

and climate can be identified, comfort indices based on 

climate data and climate classification using geo-

referenced data. Both originate from outside the domain 

of the built environment, comfort indices have been 

adapted for use in building design the latter has not been 

rigorously studied as a tool for building design.  

The need to assess human response to thermal 

environment has led to the development of comfort 

indices (Jendritzky, de Dear, & Havenith, 2012). For the 

built environment, these indices have been extended and 

become part of the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) 

standards (2013) . ASHRAE defines methods for 

predicting occupant thermal comfort while other indices 
are designed to reflect an individual’s perception of 

temperature given a set of variables. The origin of these 

approaches is based on human-heat-balance models and 

empirical studies involving responses of human subjects 

exposed to controlled climatic conditions. By reducing 

climatic variables affecting comfort to a single-dimensional 

index, underlying causes are occluded. Empirical studies, 

use limited subject group that inherently introduce 

geographical, and demographic bias. Reducing 

multivariate data to a single index highlights a data-

processing arbitrariness (Rhee, Im, Carbone, & Jensen, 

2008). Adapting published standards to equatorial 

climates (Toe & Kubota, 2013, Bravo & González, 2013) 

illustrates the bias in methodologies developed and 

applied in higher altitudes.  

Three major climate classification approaches exist  

(Allaby, 2010); A - common vegetation boundaries, B - 

boundaries defined by moisture budget and potential 

evapotranspiration and C - atmospheric circulation of wind 

and major airmasses. Classification techniques tend to 
emphasise botanical zoning which is not equivalent to the 

spatial distribution of the potential for human comfort. 

Traditional methods are heuristically based which can 

prejudice lesser understood areas by diminishing the 

impact of certain data in classification (Zscheischler, 

Mahecha, & Harmeling, 2012). 

K-means clustering is an unsupervised learning algorithm 

that works iteratively to identify k groups within the 

dataset, assigning each data point to one cluster, based 

on feature similarity. The technique have been used to 

classify climate, and successfully defined zones of similar 

multivariate characteristics (Bharath & Srinivas, 2015). 

Clustering methods have been applied to long term 

regional planning and developing design strategies for 

use of water resources, agriculture, food security and 

studying the impacts of localised climate change.  

We propose a system to address the complexity of 

tropical climates and human comfort in the built 

environment. Using unsupervised learning on a climatic 

dataset of variables that determine comfort, we define a 

classification system designed for human rather than 

botanical purposes. Rather than extend an existing 

comfort index, we propose that objective data processing 
can minimise the geographical bias associated with 

empirically derived comfort indices developed in other 

latitudes.    
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METHODOLOGY 

CLIMATE DATA 

Our classification is based on ten years of multivariate, 

historical, monthly averages of gridded climate data from 

three sources. First, climatic data from 1901-2009 

formatted as ESRI ASCII raster by CGIAR CSI (Cgiar-

csi.org., 2012) based on original data from CRU (Jones & 

Harris, 2008). Secondly, wind speeds from the CCMP 

gridded surface vector winds (Wentz et al., 2015). Thirdly, 

elevation data is extracted from a hole-filled DEM of 

SRTM (Jarvis, Reuter, A., & Guevara, n.d.). The first 
phase of our process is the preparation the climate data.  

 

Figure 1. Flow diagram showing the stages of the data 
preparation process. Source: authors. 

Figure 1 illustrates the data preparation steps. A C# dot 

net program was written that takes a topojson (Bostock, 

2017b) format file as input, this describes the boundary 

(or collection of boundaries) that define the zone of 

interest. A point grid is generated at half degree latitude 

and longitude intervals filling the area(s) of study. Cross-

referencing the grid to the DEM determines altitudes for 

each point. 

The grid is used to extract climate data from a ten-year 

period (2000-2009) from the CRU and CCMP datasets. 

CRU data is formatted as ASCII ESRI raster format at the 

same resolution as the grid. CCMP data is in netCDF 

format, this was pre-processed with an independent Java 

program, written using the Unidata (2017) netCDF Java 

library.  The netCDF data was converted to the ASCII 

ESRI raster format. Each ASCII raster file represents a 
single month of a year and contains data for earth’s 

surface. Data points in the raster files that coincide with 

our grid vertices are found and stored with the 

georeferenced grid in arrays. Relative humidity derived 

using the ratio between vapour pressure and saturation 

pressure. The data is averaged for the 2000-2009 period 

providing a typical year with monthly values. The prepared 

climate data can be saved to a Java Script Object 

Notation (JSON) file.  

Phase two (figure 2) implements the k-means algorithm 

for a range of clusters. The JSON file containing the 

climate data from the previous stage is read. Three 

comfort indices are calculated for each climate data-point 

and used for evaluation later in the process. The climate 

data is scanned and maximum and minimums identified, 

and the data is normalised. Normalised data is used to 

define a set of tri-variate data-vectors (temperature, 

relative humidity and wind speed) that the clustering 

process learns from. Data-vectors are pre-processed 

using Principle Component Analysis (PCA) transformation 
to emphasise variation and make the normalised vector 

data more readily interpretable.  

 

Figure 2. Flow diagram showing the stages for the k-clustering 
study. Source: authors. 

The k-clustering study iterates through each of the desired 

number of clusters. The transformed data-vectors and 

number of clusters are inputs to the k-means algorithm 

which finds the clusters and assigns each data-vector to a 

single cluster. Data-vectors are grouped by cluster and 

convex hulls are found containing all the data-vectors in 
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each of the clusters. Hull geometry is written to a csv file 

and used for visualisation of the results.  

Two groups of evaluation metrics are generated to assess 
the quality of each of the k-clusters in the study. Similarity 

measures can be defined by considering the Euclidean 

distances between data-vectors and measures of 

conformity are defined by comparing results to existing 

comfort indices. 

Similarity is assessed by calculating the silhouette 

coefficient (S) and cluster distortion. S is a measure of 

how cleanly the data is grouped this is calculated per 

data-vector by finding its cohesion ai (the average 

distance between it and all other vectors in the same 

cluster) and separation bi (the average distance between 

it and all other vectors in other clusters). Silhouette 

coefficient for a point (Si) is calculated as: 

𝑆
𝑖= 

𝑎𝑖−𝑏𝑖
max (𝑎𝑖,𝑏𝑖)

 

By averaging Si for all the data-vectors a cluster silhouette 

coefficient can be calculated and by averaging across all 

clusters an overall silhouette coefficient can be calculated 

for the study. Si ranges from minus one to one, negative 

values indicate poor clustering with overlap and positive 

values suggest better clustering. Distortion is the average 

distance between all the data-vectors in a cluster and the 

cluster centroid, this is calculated for all cluster and 

averaged across the solution. Smaller distortion values 

indicate better formed clusters. 

Conformity to three existing comfort indices is assessed. 

Universal Thermal Comfort Index (UTCI) (Jendritzky et al., 

2012), apparent temperature (AT) (Steadman, 1994)  and 

Colombia’s IDEAM index (González, 1998) were 

calculated for each data-vector using temperature, relative 
humidity and wind speed. For each index, the standard 

deviation in each cluster is calculated and averaged 

across the solution.     

For each clusters’ centroid the temperature, relative 

humidity and wind speed can be found by reverting the 
PCA transformation. The three existing indices can be 

calculated for the centroid. Mean absolute deviation for 

each index in each cluster is found by the averaging the 

differences between the cluster’s central index and the 

index of each data-vector in the cluster. This is averaged 

across the solution. 

Evaluation metrics are stored, the results of the clustering 

iteration is written to a JSON and the number of k-clusters 

incremented, and the process is repeated. Finally, a 

summary of all the evaluation studies is written to a CSV 

file. Results are visualised in an online viewer (Clima-

colombia.org, 2018) created with JavaScript and the D3.js 

library (Bostock, 2017a) for dynamically manipulating 

online graphics using standard web formats. Clusters are 

mapped geo-spatially maps and cluster convex hulls are 

modelled in a three-dimensional parameter space. 

RESULTS 

We compared the results of our classification study to 

three existing comfort indices to assess how closely our 

results conformed to published standards (table 1). The 

international UTCI (Jendritzky et al., 2012), 2. AT 

(Steadman, 1994) and Colombia’s IDEAM index 

(González, 1998). Mean absolute deviations were 

calculated between data-points and the index for their 

cluster’s centroid. Standard deviations between points 

within the same cluster were calculated and averaged 

across each study. To evaluate the geometric similarity of 

the clustering Euclidean distances between points within 

cluster and distances between clusters were examined 

and silhouette coefficients and mean cluster distortion 
determined for each study.  

Table 1. Summary results of each k-cluster study in comparison 
to the indices (UTCI, IDEAM index and AT), cluster distortion and 
silhouette coefficient.   
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3 4.50 5.29 1.53 2.80 5.20 4.95 0.06 0.36 

4 3.26 3.58 1.40 1.80 3.74 3.09 0.05 0.41 

5 2.92 3.07 1.54 2.01 3.52 2.90 0.05 0.37 

6 2.76 2.92 1.46 1.88 3.36 2.75 0.04 0.35 

7 2.67 2.84 1.40 1.75 3.36 2.68 0.03 0.34 

8 2.55 2.78 1.43 1.67 2.96 2.34 0.03 0.35 

9 2.52 2.71 1.37 1.59 2.95 2.30 0.03 0.34 

10 2.40 2.59 1.52 1.68 2.75 2.16 0.03 0.35 

11 2.39 2.61 1.50 1.66 2.70 2.17 0.03 0.34 

12 2.37 2.54 1.46 1.59 2.75 2.15 0.03 0.32 

13 2.31 2.47 1.44 1.60 2.73 2.11 0.02 0.31 

14 2.26 2.42 1.40 1.53 2.74 2.08 0.02 0.31 

15 2.26 2.38 1.37 1.47 2.78 2.04 0.02 0.30 

16 2.27 2.36 1.35 1.41 2.82 2.02 0.02 0.30 

17 2.25 2.32 1.33 1.37 2.81 2.01 0.02 0.30 

18 2.27 2.29 1.34 1.32 2.94 1.99 0.02 0.28 

19 2.24 2.27 1.37 1.35 2.86 1.96 0.02 0.28 

20 2.20 2.25 1.41 1.40 2.82 1.95 0.02 0.28 

 

Figure 3. Standard deviation and Mean Absolute Deviation 
compared to UTCI and AT over the 3-20 k-cluster study. 

Figure 3 shows how each of the clustering studies varies 

from UTCI and AT. Lower values for both types of 

measure indicate the clustering more closely represents 

the notion of comfort described by the indices. As the 

number of clusters increases these values drop until 
around ten clusters where the rates of reduction 

decreases. 

IDEAM’s index is developed specifically for Colombia and 

results in a range of values from 0 to 15 where 0 

represents a very hot sensation. Unlike the other indices it 
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does not have units. Figure 4 shows the results of 

averaging the standard deviation and mean absolute 

deviation across all clusters for each of the studies. Lower 

values show closer alignment between clusters and the 

index, both rapidly drop in the first iteration of the study 

before slightly higher values at five clusters and an 

absolute minimum at 17-18 clusters and a second 

minimum at about nine clusters. 

 

Figure 4. Standard deviation and Mean Absolute Deviation 
compared to IDEAM index over the 3-20 k-cluster study. Source: 
authors. 

None of the evaluation metrics provide absolute support 

for an optimum number of clusters although each metric 

(except for distortion) indicates a significant change at 

around ten clusters (nine in the case of IDEAM’s index). 

Beyond ten clusters the gains diminish rapidly. At four 

clusters both the comparison with IDEAM’s index and the 

silhouette coefficient indicate low values suggesting good 

clustering performance. 

Silhouette coefficient is the ratio of cohesion to separation 

and is in a range of minus one to one (Janert, 2010). 

Negative values indicate poor clustering where cluster 

radii are greater than inter-cluster distances, positive 

values suggest better clustering.  Figure 5 shows all 

values are positive with a clear peak at four clusters and a 

second peak at ten clusters. 

 

Figure 5. Distortion and silhouette coefficients over the 3-20 k-

cluster study. Source: authors. 

Distortion is measured per cluster as the average distance 

between the cluster points and its centroid. Lower 

distortion values represent better clustering as the more 

points are aggregated around cluster centroids the less 
the average distance. The lower line in figure 5 shows the 

average distortion for all clusters for each study showing 

low values reducing as the total clusters increases. 

The silhouette coefficient and distortion values generally 

show good clustering, very small reductions can be 
observed in both. Very clearly defined and separated 

clusters would give silhouette coefficients closer to one 

here the values are around 0.3 which can be attributed to 

the smooth distribution of climate data.  

Visualisation is the third approach to evaluation clustering. 

The online result viewer (figure 6) provides an interactive 

means of visual evaluation principally intended for the 

thermal comfort or meteorological specialist, but ultimately 

a prototype for dissemination to a wider range of users. 

Controls allow viewing different number of clusters at 

different months of the year. The scale indicates the three 

parameters associated with each cluster type and the 

UTCI calculated for that cluster. 

Convex hulls of each cluster are modelled to show the 

distribution of clusters in three-dimensional parameter 

space (figure 6, top-left). The model can be rotated to 

view how clusters subdivide the parameter space 

supports choice of number of clusters. 

DISCUSSION 

OVERVIEW 

Our goal is to develop a climate classification system that 

describes comfort. While climate can be described with 

classifications, current systems are problematic for 

representing human comfort:  

a. Parameters used do not directly relate to comfort. The 
potential for the evaporation of sweat is key to 

understanding comfort. For this humidity and wind speed 
must both be represented. Current systems do not combine 
both, humidity is deduced from rainfall and temperature.  

b. Seasonal variations captured in the zoning of current 
classifications do not represent tropical climate patterns 

typified by daily variations. 

c. Boundaries between zones are arbitrarily defined. 

 

Figure 6. Online viewer for the Human Comfort Climate 
Classification for Colombia with ten classes (Clima-colombia.org, 

2018). Source: authors. 

These issues are addressed in our classification by: 

a. Using parameters directly related to comfort (temperature, 
relative humidity and wind speed). 
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b. Monthly data is used. 

c. Clustering is an objective procedure. 

Comfort indices exist to describe human response to 

climate variables, but they are problematic because: 

a. They were created using human subjects in higher latitudes 

and do not represent the tropics. 

b. They seek to reduce comfort to a single value and occlude 
underlying causal data. 

Shortcomings of comfort indices are avoided through: 

a. Use of data rather than sampling human perception. 

b. Actual parameter values are exposed. 

 

IMPLEMENTATION FOR COLOMBIA 

Statistical evaluation indicated four and ten clusters 

performed well, however, the selection of the number of 

clusters cannot be undertaken solely with metrics and 

must include domain knowledge to make informed 

decisions.  Increasing cluster numbers serves to become 

more specific but at the cost of generality (Fovell & Fovell, 

1993), lower cluster numbers represent a loss of detail 

but, they can enhance interpretation and generality. 

Climate data varies smoothly and hard edges between 
clusters do not exist, the choice is partly subjective and 

based on an adequate subdivision. We required sufficient 

clusters to represent the climatic diversity of Colombia but 

a quantity that was practically useful to apply knowledge 

extracted from the study.   

Examining the clustering results using expert knowledge 

and known characteristics of Colombia suggested seven 

clusters. With seven clusters detail emerged describing 

climatic zones known not influenced by altitude. Our study 

classified monthly data, manual evaluation at this scale 

was cumbersome, to facilitate expert interrogation 

monthly parameters were averaged to produce an annual 

clustered classification (figure 7). 

 

Figure 7. Human Comfort Climate Classification for Colombia 
with seven classes (Clima-colombia.org, 2018). Source: authors. 

The first three clusters define altitude associated 

conditions. The first includes peaks on the eastern and 

western mountain ranges of the Andes (Bogotá and 

Tunja). The second cluster is located around the first and 

includes Medellín, Bucaramanga and Yopal, it has a 

higher temperature and higher wind speed than the third 

cluster providing an over cooler zone. The third cluster 

covers the central southern part of the Andes (Cali, 

Popayán, Ibagué, Manizales and Pereira).  The next four 

clusters define diverse combinations of the three variables 

at low altitudes, the fourth cluster covers the Caribbean 

region and central Orinoco, characterised by highest wind 

speeds and includes Santa Marta, Barranquilla, 

Cartagena, Riohacha, Cúcuta and Puerto Carreño. 

Cluster five is at the limits of the fourth (Guaviare and 
Quibdó). The sixth includes low altitude areas between 

the mountain ranges (Neiva and Arauca).  Cluster seven 

has the highest humidity and lowest wind speed and 

covers the Amazon and lower part of the Pacific coast 

(Leticia and Buenaventura). 

Annual averaged clustering permits comparison to the KG 

(figure 8a) and Holdridge (figure 8b) classifications 

created for Colombia with the same dataset. KG 

classification defines five classes in Colombia, that partly 

capture the dryness of the Caribbean region and 

demarcate higher altitudes of the Andes, but 85% of the 

Colombian territory is classed ‘Equatorial with dry 

summer’, including most cities below 1000 meters 

altitude.  The Holdridge classification defines ten classes 

suggesting more detail than KG and identifying Caribbean 

dryness and higher humidity in the Amazon and Pacific, 

60% of the country is classed ‘Subtropical moist forest’. 
That both KG and Holdridge place most of the country in a 

single class, does not align well with our comfort 

clustering or our knowledge of the actual diversity. 

 

Figure 8. Köppen-Geiger Classification (a) and Holdridge Zones 

(b) for Colombia. Source: authors. 

To further support to expert interrogation of results we 

clustered and mapped the data according to UTCI, AT 

and IDEAM index (figure 10). Visually, general similarities 

to our clustered classification can be observed. The UTCI 

and AT indices show smoother spatial variations (due to 
the lower dimensionality dataset) and higher detail in the 

Caribbean region, neither of which are captured in our 

classification. The IDEAM index leaves most of Colombia 

below 1000 meters within the same category, but our 

cluster classification captures a greater level of detail. 

CONCLUSION 

We present a climate classification that describes 

homogeneous zones of climatic conditions contributing to 
variations in human comfort. The development and 

application of the system in Colombia is described, where 

the goal is to support bio-climatic, low-energy design 

strategies aiming to improve comfort in the built 
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environment. The classification provides a geographical 

view that focuses on human habitation factors and 

includes temporal variation at monthly granularity. To 

develop this system of classification we used a k-means 

clustering algorithm, an unsupervised machine learning 

process capable of identification of similar groups within 

multivariate data-sets. We evaluated our results according 

to a statistical review of a range cluster numbers and by 

expert interrogation of visual output. Statistics enabled 

comparison to existing comfort indices and measured the 
similarity of clusters. The visualisation of our results 

allows manual interrogation with domain expertise and 

assessment driven by knowledge of the Colombian 

climate.  The two modes of evaluation indicated that the 

applied approach could produce valid results with different 

numbers of comfort classes. 
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