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Abstract   

This paper introduces, first, the value of obtaining dynamic information through smart 

environments for Architecture feedback at building scale. Second, it describes the co-

evolution of the systems design for specific sensitivities required to perform meaningful 

analyses for the different scales. Third, it presents the significance of obtaining spatial and 

temporal occupancy data of high resolution, allowing significant new architectural analyses to 

emerge. Furthermore, it concludes by describing the vision for the future trajectory of this line 

of research. 
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INTRODUCTION   

We envision the future of computational design integrated 

with smart environments –at city, campus, building and 

human scales. Specifically, the inclusion of dynamic 

information into the computational models. The long-term 

goal is to integrate dynamic stochastic data, such as 

human behavior, into the models, for the development of 

analyses at four levels: Systems automation for smart 

environments, building performance outcomes, 

organizational performance outcomes, and feedback for 

buildings redesign.  

This research focuses on smart building environments, 

presenting a co-evolution between the design and 

development of a pressure sensing flooring system 

(Piezo-flooring or PZ-flooring) for human behavior data 

acquisition (Figure 1), as well as the set of analyses 

based on spatiotemporal occupancy data [Gomez, 2017]. 

The objective is to present a framework of the importance 

of spatiotemporal occupancy and behavioral data for 

architecture analyses and feedback 

Current research in the leading architecture offices 

focuses on the analytics of information at the earliest as 

well as latest design stages, with the purpose of 

optimizing some aspects of architecture designs, such as 

the layout organization, building orientation and façade 

design, energy consumption and light quality, among 

others. The goal is to achieve the optimization of certain 

aspects as well as achieve some standards (i.e. LEED or 

Leadership in Energy and Environmental Design 

standards). Building energy simulations are one of the 

most popular analytics, with the highest revenues for the 

clients and the industry; However, the occupant modeling 

does not yet include the actual occupancy of a building 

(Kim, 2016).  

Building Information Modeling (BIM) allows some separate 

analyses, such as programmatic spaces, building 

circulation, energy consumption, and preliminary cost 

[Sanguinetti et al., 2012]. However, these analyses are 

currently using passive information based on stored 

historic data (codes, weather data and climate zones), 

which does not consider the nuances and granularity of 

real-time variations. Our long-term goal of including 

dynamic information about spatial occupancy in 

architectural analyses implies several challenges, at 

numerous levels. First, at a highest level, it requires 

obtaining occupancy data of high temporal-and-spatial 

resolution; second, it implies determining meaningful 

assessments based on the characterization of the data 

obtained, which, in turn, requires the development of the 

right sensing system. These challenges cannot be 

isolated from each other since there is a direct correlation 

between type of sensors, the characterization of data they 

collect –their accuracy, precision and resolution– and the 

analyses we can obtain from such data.  

Within this context, this paper presents the framework for 

a line of research that comprises two branches: First, 

collaborative technology-development research on Smart 

Flooring Systems, and second, the analytics implemented 

for meaningful Architectural outcomes. The goal of both 

branches combined is to support the optimization of layout 

design and organizational performance, developing new 

and dynamic building performance analyses.  
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SMART ENVIRONMENTS 

Smart Environments is derived from the paradigm of 

ubiquitous computing, which is defined as “a physical 

world that is richly and invisibly interwoven with sensors, 

actuators, displays, and computational elements, 

embedded seamlessly in the everyday objects of our 

lives, and connected through a continuous network." 

[Weiser, Gold, and Brown, 1999]. According to Dey, 

Abowd and Salber (2000), “One of the goals of a smart 

environment is that it supports and enhances the abilities 

of its occupants in executing tasks. These tasks range 

from navigating through an unfamiliar space, to providing 

reminders for activities, to moving heavy objects for the 

elderly or disabled.” In this research, we are extending 

this vision further. Our goal is to enhance not only the 

tasks and experience for users, but to obtain a deeper 

feedback for the building analytics, which can be useful 

for several stages of the building lifecycle, from design to 

post-occupancy.  

 

Figure 1: Conceptual Image of the Smart PZ-flooring system 

BUILDING ANALYTICS 

On the one hand, areas of Architectural research, such as 

Space Syntax and Evidence-based Design (EBD), have 

focused on understanding the influence of space 

configuration on human behavior, with an emphasis on 

binary occupancy, directional movements, and social 

interactions as counters (Bafna, 2003; Hillier 1984 a and 

b). However, the traditional methods utilized to collect 

behavioral data are resource intensive and require 

observation and manual inputs to acquire relative 

accuracy [for details please reference to Gomez, 2017, 

Chapter 2]. Those methods require human interpretation 

to be precise, but they still lack high spatial and temporal 

resolution to allow meaningful architectural analytics 

(Gomez, 2014). On the other hand, the area of simulation 

and modeling for evaluating building use (i.e. energy 

consumption, or building organizational schedules), had 

conventionally used a set of existing agent-based 

simulation models. These analyses have provided an 

approximation of results, which are used to make design 

decisions at all design stages, from early design stages 

such as massing design, to late design stage decisions 

including specifying HVAC systems. Researchers have 

compared those results, finding an important difference 

between the calculated models and the real post-

occupancy outcomes (Kim, 2016), determining that agent-

based simulation models should include stochastic 

factors, imported from real post-occupancy analyses. 

Differences between the architectural models and post-

occupied buildings naturally emerge, especially in how the 

spaces were intended to be used and how they are 

actually used. Based on the work of several authors that 

make a distinction between the ideas of “program” and 

“programming” of a space (Markhede et al., 2007 and 

2010; Koch and Steen, 2012), Gomez (2014 and 2017) 

presented the concept of incorporating the real spatial 

programming and actual occupancy into the digital 

models, and compared them with actual occupancy. This 

includes the real-time number of occupants as well as 

changes over time of organizational schedules and space 

functions. The goal was to demonstrate that human 

behavior is not only influenced by the layout configuration, 

as conceived in the early literature presented above, but 

also by the space functions assigned and modified over 

time, the organizational programming, and the actual 

activities being performed. In this context, smart 

environments bring the opportunity to advance the 

behavioral data collection towards larger volumes of 

spatial and temporal data with more resolution, accuracy, 

and precision. This article presents two concepts: The 

technology definition to capture such data, introducing the 

challenges faced during the development and installation 

of one of the largest smart flooring prototypes (200 ft2) 

(refer to figure 6); and the correlation between the aspects 

definitions for the design of a technology and the final 

analytic outputs to be achieved.  

PIEZO-BASED FLOORING SYSTEMS 

Our smart and sustainable Piezo-based flooring systems 

are designed for three scales: Body, Building and Campus 

scales (figure 2). The indoor building PZ smart flooring 

system specifically, is designed as an under layer for 

building applications. This indoor system has three 

functionalities: (1) Pressure sensing though an electronic 

floor underlay; (2) data capturing, transmission, and 

storage; and (3) data analysis, mapping, and visualization. 

 

(a)                         (b)                               (c) 

 

Figure 2: The evolution from (a) the first PZ-flooring laboratory 

concept; to (b) an interactive Photo booth system installed at the 

ATL Hartsfield Jackson international airport; to (c) a Campus 

scale PZ-tile for the Kennedy Space Center installation.  
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The substrate consist of a high-density array of sensors, 
which are able to capture pressure when squeezing the 
piezo material. From that signal output, we developed a 
set of algorithms that provides the data to calculate 
occupants‟ foot position, occupants‟ spatial and temporal 
distribution, and specific “events”, such as steps or falls. 
These data are recorded in real time, providing positioning 
data points of a high resolution. 

Custom designed electronics are responsible for capturing 
the pressure values and wirelessly transmitting the data to 
a server. The data includes the time stamp (t) in 
milliseconds and a single dimensional column-first base 
64-byte array of the voltages (V) sampled from the 
transimpedance amplifier that is interpreted as the 
pressure at each sensel. The spatial coordinates (x,y) of 
each sensel are implicitly defined in the ordering of the 
single dimensional column-first structure of the values. 

From the 4D array of data points, a set of specific 
algorithms were custom developed to interpret and 
analyze the types of activities that may occur, such as 
occupants‟ position, occupants‟ spatial and temporal 
distribution, and expected repetitive events, such as steps 
or incidental events such as  falls,  occur. This information 
is post-processed into occupancy values per square foot, 
or “cells” to obtain a weighted „occupancy grid‟ for further 
analysis of spatial occupancy patterns at the room or 
building scale. 

SYSTEM SPATIOTEMPORAL RESOLUTION 

The spatiotemporal resolution of a grid of sensors varies 
depending on the scale of the project and the intended 
analyses that relate to that scale. During this research, we 
tested different grid resolutions, from four (4) sensors per 
square foot to half (½) of a square inch, in different 
patterns. For example, for a building scale, a resolution of 
1 square foot (Figure 3), which corresponds to the size of 
a carpet tile as well as a personal space bubble (defined 
by Hall, 1960), is sufficient to study the building patterns 
of activities between spaces, across weeks. While for 
body scale, a resolution of half (½) square inch is 
appropriate for detecting the pressure distribution of a 
human footstep, and to therefore study the walking 
patterns of users (Figure 4 and 5). The adjustment of 
temporal resolution also varies from application to 
application, from 1 to 60 times per second. For example, a 
temporal resolution lower than 15Hz does not allow the 
recognition of a running activity, due to the high frequency 
of steps on the surface.  
 
 
 

 

Figure 3: Example of an Occupancy Grid of 1 ft. x 1 ft on a 

corridor. Intensity of color gray indicates the amount of time that 

cell was occupied, in intervals of 1 second, for a 1-hour period. 

 

 

Figure 4: Upper image: Spatial sensor grid with a resolution of 

½ inch x ½ inch, and no pressure on the area. The bottom image 

shows a person standing in the area: Heat map indicates the 

intensity of the pressure on the cell, at intervals of 60 times per 

second. 

 
 

 
 

Figure 5: Example of a spatial sensor resolution of ½ inch by ½ 

inch. Heat map indicates the intensity of the pressure on the 

surface, 60 times per second. Upper part of the image shows 

someone doing push-ups along the surface, while the bottom part 

of the image shows the pressure of someone sitting on the floor. 

Projects at the building scale face several challenges 

related to spatiotemporal resolution. One such a problem 

is the use of thin film sensors to maintain uniformity in the 

system thickness. Additionally, the decisions on data 

granularity and density depend on the output analytics. 

Each sensing flooring unit (e.g. carpet tile or square inch) 

is read independently. The smaller the sensor, the fewer 

signal impulses are sent, but the higher the spatial 

resolution the system can provide. Therefore, the 

intelligent calibration point should be tuned between the 

sensor capabilities and desired spatial resolution.  
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Figure 6: 200 ft
2
 prototype installation of a senior care living area, 

at Leading Age (2017), Upper image shows the real-time 

visualization of steps. 

DATA COLLECTION AND ANALYSES  

The PZ smart flooring system includes the implementation 

of a Web App that displays a visualization of the data in 

real-time (figures 6 and 7). We discovered that this literal 

visualization of a heat-pressure map was the most logical 

to communicate the concept to the user (Figure 8, left 

side). Then, more sophisticated algorithms showing the 

total number of steps, accumulation of movement, or 

more high-level interpretations such as number of visits to 

a room, were more comprehensive analytics, but not as 

easy to translate to the user (Figure 8, right side). 

A prototype of a set of PZ-tiles was installed on site (See 

figure 6), collecting data of the daily usage, as counters of 

events (or steps). The amount of data coming out of this 

system, per second, requires some compression 

algorithms to be able to transmit the amount of data at the 

necessary speed (10Hz). The large system was a key test 

of the system architecture for aggregation of units, as well 

as the wireless data transmission and the spatiotemporal 

visualization. The current stage of this research is on the 

implementation of the most advanced analyses described 

in the first section for events, utilizing machine-learning 

algorithms to teach the system to automatically recognize 

specific “events”, such as falls, one of the most expensive 

events in any healthcare facility, for example.  

Figure 7: Concept of the Interactive PZ-flooring data visualization 

on an IPad.  

 

Figure 8: Representation of a screen visualization of a “fall” 

event, and the comprehensive analytics to the right.  

CO-EVOLUTION SYSTEM – DATA 

As discussed in the previous section, the sensing 

capabilities and resolution of the system are influenced by 

a series of parameters: The thickness and stiffness of the 

material, modularity for fabrication and installation 

processes, the sensing calibration (that depends on the 

building structure and its natural vibration), and the area 

covered by each sensor, which in turn informs the spatial 

resolution of the system. All these parameters should be 

calibrated taking into consideration the sensitivity that the 

system requires (i.e. be able to recognize a jump, a step, 

or a touch), and the spatial and temporal resolution that 

best fit each scale. For example, at an urban or even 

campus scale, the resolution of 1/10 of a second is not 

relevant to the occupancy analyses during a day; 

however, for the interaction with the system, this temporal 

resolution is adequate. On the other hand, the sensitivity 

required to recognize a touch in a smart surface needs 

much higher spatial and temporal resolution, therefore 

smaller sensors distributed in high density. In addition, 

lower the thresholds for the signal outputs are required. 

DISCUSSION 

We expect that once our smart flooring system is 

manufactured at scale, it will act as an embedded 

positioning mapping system that provides feedback from 

the real use of a building, updating the results that are 

currently obtained from evaluating computational models 
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on spatial, energy, or circulation analyses. As our 

spatiotemporal occupancy datasets include not only the 

spatial distribution of occupancy and movements, but their 

temporal sequence as well, the analyses accuracy 

improvement is not only quantitative as for data amount, 

but also qualitative for expanding the type of analyses 

offered. 

The interactivity of the system allows for the automation of 

other systems, such as lighting systems; The real-time 

feedback allows for organizational improvements on the 

staff schedule, for example, or on the report of 

unexpected/unwanted events, such as falls. In addition, 

for building performance outcomes, further development 

of the system could also optimize other aspects that are 

based on building occupancy. For example, this real time 

data streaming will allow sending data to the building 

management system to calculate real time energy 

consumption to calibrate the HVAC system or the 

conference-room scheduling system. Once the data is 

stored, the databases can be updated for energy 

simulation models.  Finally, all the information Architects 

will be able to gather from this type of non-invasive 

system, can be directly applied for re-design strategies of 

a building in terms of layout configurations or user 

experience.  

The obtained feedback can be embedded into a BIM 

model to 1) understand the patterns of behavior to embed 

them later in similar design models, and 2) use the model 

to help building managers to make performance-based 

decisions about the spaces and layout configuration, as 

well as organizational decisions to control people‟s traffic 

and behavior. Usually, these decisions are based on 

previous experience. However, during building operation, 

there are no reliable means to assess if the current layout 

is optimized to its best performance toward the expected 

goals.  
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