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Abstract   

Due to construction costs, the human effects of innovations in architectural design can be 
expensive to test. Post-occupancy studies provide valuable data about what did and did not 
work in the past, but they cannot provide direct feedback for new ideas that have not yet 
been attempted. This presents designers with something of a dilemma. How can we harness 
the best potential of new technology and design innovation, while avoiding costly and 
potentially harmful mistakes? The current research use virtual immersion and biometric data 
to provide a new form of extremely rigorous human-response testing prior to construction. 
The researchers’ hypothesis was that virtual test runs can help designers to identify potential 
problems and successes in their work prior to its being physically constructed. The pilot study 
aims to develop a digital pre-occupancy toolset to understand the impact of different interior 
design variables of learning environment (independent variables) on learning performance 
(dependent variable). This project provides a practical toolset to test the potential human 
impacts of architectural design innovations. The research responds to a growing call in the 
field for evidence-based design and for an inexpensive means of evaluating the potential 
human effects of new designs. Our research will address this challenge by developing a 
prototype mobile brain-body imaging interface that can be used in conjunction with virtual 
immersion. 
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INTRODUCTION   

The idea of studying behavioral patterns to investigate 

human responses to architectural design has been around 

for many years, but it is only recently that this approach 

has consolidated into the widely recognized paradigm 

known as evidence-based design (EBD). This approach to 

architectural design relies on the careful empirical study of 

human responses and outcomes to inform design 

decisions (Cama, 2009; Edelstein & Macagno, 2012; 

Hamilton & Watkins, 2009). Many previous investigations 

have provided evidence that EBD practices can 
successfully improve the overall perceived quality of the 

architectural environment as well as specific measures of 

building performance (Ulrich, 2001, 2006; Hamilton & 

Watkins, 2009; Sailer, 2009; Lawson, 2010). The EBD 

approach has become particularly influential in healthcare 

settings, where it has been associated with improvements 

in the quality of care, greater patient satisfaction, and a 

decrease in the number of medical errors (Ulrich et al., 

2008). 

Current technology encourages designers to introduce 

more innovation into their work. While this innovation 

often leads to exciting and effective results, it also takes 

us away from tried-and-true solutions, into relatively 

uncharted territory. Scholars have demonstrated that the 

characteristics of the built environment can have a 

significant effect on human well-being. Specific design 

components have been strongly correlated with health 

outcomes (Truong & Ma, 2006; Wheaton et al., 2015), as 

well as with human efficiency and productivity (Day, 

2017). Renewed interest in human-centered design in 

recent decades has led researchers to document the 
contributions of architectural design for reducing stress, 

improving mood, and enhancing visual memory, among 

other benefits (Ulrich et al., 1991; Sallis et al., 2006). 

Numerous studies have investigated different architectural 

styles and design-choices and how they affect human 
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experiences (Choo et al., 2017; Vecchiato et al., 2015; 

Vartanian et al., 2013; Roe et al., 2013; Banaei et al., 

2015; Shin et al., 2014; Küller et al., 2009). 

Unfortunately, when innovative designs are created, it is 

difficult to accurately evaluate their full human effects, 

positive or negative, until after the buildings are 

constructed and put into use. This presents contemporary 

designers with a dilemma. How can we harness the best 

potential of the innovation allowed by today’s technology, 

while avoiding costly and potentially harmful mistakes?  

The goal of this research was to examine the effects of 

building-design on human factors (stress, anxiety, visual 

memory, etc.), by measuring the responses of participants 

as they interact with different architectural designs using 

Virtual Reality technology. The researchers’ hypothesis 

was that virtual “test runs” can help designers to identify 

potential problems and successes in their work prior to its 

being physically constructed. 

 

 

The learning environment includes social, cultural, 

temporal, physical (built and natural), and sometimes 

virtual aspects (McGregor, 2004; OECD, 2014). Student 

performance has been shown to have a significant 

relationship to the quality of the learning environment 

(Chan & Richardson, 2005). Poor-quality environments 

can create barriers such as impaired concentration, 
boredom, and claustrophobia (Mendell & Heath, 2005), 

and thereby lead to poorer educational outcomes. A high-

quality learning environment, in contrast, supports 

engagement and inquiry, and accounts for a diverse 

range of developmental needs, learning styles, and 

abilities (Martin, 2010). Despite the well-established link 

between learning environments and student outcomes, 

the specific elements within these environments that 

affect students have not been rigorously broken down and 

empirically investigated. This is especially true in relation 

to the architectural environment. Temple (2007) notes 

that, “Where connections between the built environment 
and educational activities are made, the basis for doing so 

tends to be casual observation and anecdotes rather than 

firm evidence.” Further research is needed to help identify 

the individual elements of the physical environment that 

might be important from a design perspective in order to 

help support student achievement. (Kaup et al., 2013; 

Barret et al., 2015). The work that has been done in this 

area suggests, at best, a number of general themes 

regarding the optimal design of learning spaces. Perhaps 

the most dominant theme is that these spaces need to be 

flexible, both pedagogically and physically, so that they 

can be adjusted to reflect the nuances of different 

knowledge areas and specializations, as well as different 

learning styles (Butin, 2000). This awareness reflects the 

growing understanding among teachers of the importance 

of active and collaborative learning, student-faculty 

interaction, enriching educational experiences, and 

opportunities for intellectual creativity. Along with this 

emerging new pedagogy comes an increased interest in 

transforming traditional classrooms to a new learning 

environment that can more easily accommodate 

collaborative and active learning in a technology-rich 
setting (Brooks et al., 2012). 

Other specific factors that have been associated with 

higher student performance in the existing literature 

include the incorporation of naturalness (in light, sound, 

temperature, air quality, and links to nature) (Crandell & 
Smaldino, 2000; Daisey et al., 2003; Wargocki & Wyon, 

2007; Barret et al., 2015); learning environments that 

create a greater sense of individuality, ownership, and 

flexibility (Zeisel et al., 2003; Ulrich, 2004; Barret et al., 

2015); and environments that provide greater stimulation 

and sensory impact (Kuller et al., 2009; Fisher et al., 

2014; Barret et al., 2015). As can be seen in the dating of 

these citations, this is a relatively new area of study, and 

there is a lot of hope in the literature that future 

investigations can help to further isolate the relevant 

factors and contribute to learning outcomes by 

implementing these concepts and techniques. 

EXPERIMENTAL DESIGN AND 
PROCEDURE 

The researchers’ primary objective was to create a 
standardized and intuitive toolset that can be used by 

designers to help evaluate their work. 

Electroencephalography (EEGs) will be used, along with 

other noninvasive biophysical measurements and self-

reporting, to objectively analyze the participants’ 

conscious and subconscious responses to different 

building designs.  

We collected brain activity and relative spatial location 

from the participants that elect to wear the EEG headset. 

We also collected voluntarily self-reported non-identifiable 

information such as age, gender, race, ethnicity, whether 

the participants consume caffeine, alcohol or recreational 

drugs, whether they have, or have had in the past stroke, 

concussion, seizures, movement disorders or other 

neurological or physical conditions, the participant's 

current occupation.  

Our intention with the various measurements was two-

fold: to quantify the human stress response and assess 

performance on a number of cognitive tasks. Based on 

previous studies examining the first of these (Healey and 

Picard, 2005), we incorporated three biometrics 

associated with the highest correlation to self-reported 
stress—electrocardiography (ECG), galvanic skin 

response (GSR), and electroencephalography (EEG). 

Additionally, an accelerometer and electrooculography 

(EOG) sensors were attached to or near the EEG cap to 

track head and eye movement in each environment. All 

data was collected at 500 Hz and synchronized using the 

64-channel ActiCHamp module (Brain Products GmbH, 

Germany) with Ag/AgCl active electrodes. A total of 63 

electrodes were used (57 for EEG arranged according to 

the international 10-20 placement system, 4 for EOG and 

Figure 1: the description should be located below the figure, 

Arial 8. Lee and Lee (1991) rated the paper as “the best in its 
field” (p.14) 
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2 for ECG). The impedance of each electrode was kept 

below 50 kΩ, and often below 20 kΩ, at all times. This 
was ensured throughout the study with careful placement 

of the virtual reality headset. Figure 2 shows the electrode 

and equipment placement on a study participant. 

The data was recorded using the BrainVision Recorder 

software (Brain Products GmbH, Germany) and 
synchronized to the participants’ responses and the virtual 

reality environment using the Lab Streaming Layer 

program (Kothe 2014). Prior to entering each new room 

iteration or segment of the experiment, participants were 

prompted to press a specific button, programmed to act 

as a marker on the recorded biometric data. Screen 

recordings were also collected throughout the study.  

Following an introductory survey and neutral baseline 

recordings, the study was segmented into two main parts. 

Experiment “A” shown in blue in Figure 2 consisted of five 

memory tasks—the Benton Test, Visual Memory Test, 

Stroop Task, Digit Span Task and a mathematical 

problem-solving task—followed by self-reported stress 
and mental fatigue on a 10-point Likert scale. Each task 

was either consistently timed or a pre-determined number 

of questions to ensure homogeneity between room 

conditions. Instructions were provided prior to beginning 

the study for participants unfamiliar with the tasks. 

Participants were asked to complete the same tasks in a 

real classroom, a VR representation of it, and in nine 

other classroom iterations. Experiment “B” shown in red in 

Figure 2 initially asked subjects to navigate along a pre-

selected path through a cityscape featuring __ buildings 

with unique facades, after which they were asked __ 

questions regarding what they remember of the path they 

took. This was repeated once more so that participants 
could navigate the cityscape knowing the type of 

memorization questions that would be asked of them. 

Finally, they were instructed to design the façade of the 

“ideal landmark in their favorite city” by modifying 

characteristics such as height, base geometry and twist 

 
Figure 2: The experimental setup for data recording: (a) EEG electrode locations, (b) EOG electrode locations, and (c) all sensor 

equipment as worn by a study participant. Source: authors. 
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angle in Grasshopper 3D and Rhinoceros. No prior 

knowledge of either program was expected of 

participants; they were shown how to rotate their view of 

the building and instructed to toggle sliders for each of  

characteristics. Participants were given a final survey at 

the culmination of the study. 

The ten classroom designs were selected variations of 

significant interior features such as color, height, width, 

roundness and incorporation of natural elements. The first 

perfectly replicated the real classroom participants 

experienced at the beginning of the study.  

All analysis of collected signals was conducted using open 

source EEGLAB software (Delorme and Makeig, 2004) 

and other MATLAB functions related to LSL. The H-∞ 

filtering program (Kilicarslan 2016) was used to initially 

pre-process the EEG and EOG signals and eliminate 

ocular artifacts. The data was subsequently pre-

processed following a modified PREP pipeline (Bigdely-

Shamlo 2015) and band-pass filtered between 0.1 and 

100Hz before processing according to independent 

component analysis and dipole fitting. 

Each additional biometric signal collected was individually 

band-pass or high-pass filtered. From there, values such 

as heart rate, heart rate variability, average GSR power 

and average magnitude of acceleration were calculated to 

be compared. 

RESULTS  
 
At this stage, we have completed a pilot study with eight 

individual and are working on collecting the data for the 

main study. In this section we briefly explain out first data 

analysis comparing three learning environment. Our 

independent variables in design of this room were height 
of classroom, view to nature, and room texture. We 

analyzed the effect of these variables on learning 

performance of the participants during the scanning 

session separately. The SAM Test demonstrated that 

change in the design element had a significant effect on 

learning performance, Z = –1.32, P < 0.05. Specifically, 

participants were more likely to have better learning 

performance if they had natural light with view to nature 

comparing to the room without windows Z = –1.27, P = 

0.021. Following the completion of EEG recording, 

participants were presented with all of the stimuli that they 

had viewed in the scanner once again, and asked to rate 
each stimulus on pleasantness (using a five-point scale 

with anchors “very unpleasant” and “very pleasant”) and 

on learning (using a five-point scale with anchors “not 

learning-friendly at all” and “very learning-friendly”).  

Nonparametric partial correlation was computed to 

determine the relationship between design and the 

learning performance whilst controlling for pleasure. There 

was a positive significant partial correlation between 

classrooms with more simple environment comparing to 

the one with full texture (p = 0.037). However, classroom 

with higher ceiling did not show an impact on theta 

activity. 

 

Figure 3: Experimental timeline with distinct segments of the study indicated by color. Source: authors. 

• Eyes closed

• Eyes open
Baseline

• Memory 
tasks

• Likert 
scales

Real 
Classroom

• Memory 
tasks

• Likert 
Scales

Virtual 
Classroom

• Memory 
Tasks

• Likert 
Scales

Classroom 
Iterations

• Interactive 
Design

• Survey
Exit

Figure 4: The research participants completed 

learning tasks in (a) the real classroom and (b) a 

virtual rendering of the classroom. Source: authors. 
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IMPACT ON SOCIETY AND ON THE 

FUTURE OF DESIGN 

This study has the potential to provide designers, 

educators, and psychologists with an important toolset for 

evaluating the relationship between architectural form and 

human experience. It can also provide valuable data to 

help neuroscientists understand cognitive reactions to 
spatial experience. Sociologists may be interested in 

using our data to evaluate relationships between 

demographic variables (ethnicity, nationality, 

socioeconomic background, etc.) and cognitive responses 

to architecture. Engineers may be interested in viewing 

our prototype as inspiration for the design of next-

generation, context-aware, brain-body imaging (MoBI) 

technology. 

Last but not least, the construction of a broad, multi-modal 

amalgamated dataset based on comparative design 

studies using our system could contribute significantly to 

the optimization of architectural design and improvements 

in the human quality of our built environment. The ultimate 

benefit to the public will be in the form of improved health, 

creativity, productivity, and a more satisfying architectural 

experience that can come from better human-centered 

design (Kalantari, 2017). By including demographic 

variables in the analysis, designers can become more 
aware of the effects of the built environment on specific 

populations, including disabled individuals, women, and 

other minority groups.  

CONCLUSION 

Figure 5: Complete data pipeline per sensor. 

 

Figure 7: Data obtained from the pilot study participant for five conditions (indicated in columns): baseline eyes open, baseline eyes 
closed, real classroom, virtual classroom, and virtual classroom with added windows. The figure rows show the initial 5s of data from 

selected EEG, EOG, EKG and head-acceleration channels. 

 

Figure 6: Real room dipoles, left, vs. virtual room dipoles, right (<20% residual variance) 

 



 

 

6 

2
2
th

 C
O

N
F

E
R

E
N

C
E

 O
F

 T
H

E
 I

B
E

R
O

A
M

E
R

IC
A

N
 S

O
C

IE
T

Y
 O

F
 D

IG
IT

A
L
 G

R
A

P
H

IC
S

 

This project provides a practical toolset to test the 

potential human impacts of architectural design 

innovations. The research responds to a growing call in 

the field for evidence-based design and for an and for a 

and for an inexpensive means of evaluating the potential 
human effects of new designs. Our research will address 

this challenge by developing a prototype mobile brain-

body imaging interface that can be used in conjunction 

with virtual immersion. This allows participants’ conscious 

and unconscious reactions to new architectural designs to 

be evaluated before the buildings’ physical construction. 

To test the idea, we have conducted several pilot studies. 

In these experiments, we evaluated biometric data 

obtained  from  participants  who  “walked”  through  an 

architectural space in a Virtual Reality construct. We 

analyzed the data (which included participant 

demographic information), to determine if any broad and 

useful conclusions could be drawn about human 

responses to different building designs on the basis of a 

virtual experience. The results of the experiment indicated 
a significant relationship between different virtual 

architectural forms and measured stress levels.  

Current information technology has allowed many fields to 

benefit from “big data” analysis in their optimization of 

resources. However, design fields are somewhat lacking 
in this area, due to the difficulty of obtaining quantitative 

data about human responses to design and the 

tremendous investment required to construct and test new 

architectural ideas. This study has the potential to provide 

designers, educators, and psychologists with an important 

 
Figure 8: Data obtained from the pilot study participant for five conditions (indicated in columns): baseline eyes open, baseline 
eyes closed, real classroom, virtual classroom, and virtual classroom with added windows. The figure rows show (top) total al pha 

(8–12 Hz) and theta (4–8 Hz) power in all EEG channels, and (bottom) raw and tonic GSR (skin conductivity) signals. 

 

Figure 9: Correlation analysis between different non-neural biomarkers. Source: authors. 
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toolset for evaluating the relationship between 

architectural form and human experience. The 

construction of a broad, amalgamated data-set based on 

these evaluations could contribute significantly to the 

optimization of design and the quality of our built 

environment. By including demographic variables in the 

analysis, designers can become more aware of the effects 

of the built environment on specific populations, including 

disabled individuals, women, and other minority groups. 
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