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Abstract
This research proposes a Spatiotemporal Modeling approach to understand the role of 
architecture, specifically the built environment, in the COVID-19 pandemic. The model 
integrates spatial and temporal parameters to calculate the probability of spread of and 
exposure to SARS-CoV-2 virus (responsible of COVID-19 disease) due to the combination of 
four aspects: Spatial configuration, organizational schedules, people’s behavior, and virus 
characteristics. Spatiotemporal Modeling builds upon the current models of building analytics 
for architecture combined with predictive models of COVID-19 spread. While most of the 
current research on COVID-19 spread focuses on mathematical models at regional scales and 
the CDC guidelines emphasizing on human behavior, our research focuses on the role of 
buildings in this pandemic, as the intermediate mechanism where human and social activities 
occur. The goal is to understand the most significant parameters that influence the virus spread 
within built environments, including human-to-human, fomite (surface-to-human), and airborne 
ways of transmission, with the purpose of providing a comprehensive parametric model that 
may help identify the most influential design and organizational decisions for controlling the 
pandemic. The proof-of-concept study is a healthcare facility.

Keywords: Spatiotemporal modeling; Agent-based simulation; COVID-19; Virus spread; Built 
environments; Human behavior; Social distancing.

INTRODUCTION
Since the beginning of the COVID-19 pandemic, several 
studies have modeled the virus spread dynamics with the 
purpose of forecasting the number of COVID-19 infections, 
identifying the most significant factors to control them.
These virology-centric models utilize various predictive 
mathematical, statistical and agent-based models to 
project the spread of the virus, under certain conditions.
These predictive models include different categories of 
clinical, social and environmental factors to characterize 
the outbreak. Most of the current modeling efforts focus on 
understanding the virus spread patterns at large scales 
such as urban or regional scales, however they do not 
incorporate the building scale, where most of the infections 
actually occur.

To characterize the epidemic of COVID-19, most of the 
existing models use generalized Susceptible-Exposed-
Infectious-Removed’ (SEIR) models by defining different 
states for susceptible, exposed, infectious and removed 
populations (Biswas & Sen, 2020; Hamzah et al., 2020; 
Huang et al., 2020; Jia et al., 2020; Kim et al., 2018; Lin et 
al., 2020; Peng et al., 2020; Rabajante, 2020). These 
models usually assume an initial total population and an 
initial susceptible population, along with recruitment, 

transmission, incubation, recovery and mortality rates. In 
some cases, the SEIR models have been further expanded 
to include other factors in the model that can affect the 
spread including exposure time, level of Personal 
Protective Equipment (PPE), including mask wearing and 
handwashing (Rabajante, 2020), average close contacts, 
quarantined time, early quarantine, timely disinfection 
(Peng et al., 2020), severe condition rate, emigration rate 
(Lin et al., 2020), and vaccination (Jia et al., 2020). A few 
of the existing predictive models also explore the impacts 
of controlling policies and restricting measures such as 
efficiency of quarantine and isolation (Nadim et al., 2020),
government action strength (e.g. Holiday extension, travel 
restriction), intensity of responses to policies (Lin et al., 
2020), mobility control (Ma, 2020), city closure strategies 
(Huang et al., 2020), restriction on international travels, and 
school closure (Chang et al., 2020).

Although the built environment may play a significant role 
in the virus spread, the inclusion of spatial factors in 
COVID-19 modeling studies has been limited to a few 
measures including social distancing (Giuliani et al., 2020; 
Kim et al., 2018), distance from the epicenters (Rabajante, 
2020), and geographical location (Giuliani et al., 2020; Ma, 
2020). The most current research shows how different 
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attributes of the built environment, such as virus stability on 
surfaces, temperature and humidity (Jia et al., 2020), and 
attributes of behavior, such as occupancy rates and PPE 
levels (Jones, N. R., Qureshi, Z. U., Temple, R. J., 
Larwood, J. P., Greenhalgh, T., & Bourouiba, L., 2020). are 
related to the probabilities of virus transmission. In this 
context, our research proposes to build a model that 
integrates: 1) Virus data from experimental research; 2) 
Human behavior, which is the key mechanism for virus 
transmission; and 3) The building, which offers the 
conditions for the virus transmission to occur.

The building layout and therefore its program, schedule and 
occupancy rates, characterize the building analytics. These 
include the most probable occupied spaces and areas, the 
most probable circulations routes, and occupancy rates, 
define the potential use of the space.  Dynamic 
environmental conditions such as temperature, humidity 
and lighting conditions, also have an impact on this specific 
spatiotemporal model for virus spread.

Human behavior plays a significant role in the pandemic. A 
sick person will spread the virus depending on several 
factors, including the severity of their symptoms, the 
activities and actions performed, and the use of PPE.  First, 
the distribution of sick population is approximately 30% 
asymptomatic and 55% with mild symptoms. The 
remaining 15% require hospitalization. The duration of a 
contagion period increases from 14 to 25 days based on 
the severity of the symptoms (Lauer, S. A., Grantz, K. H., 
Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R.,Azman N., 
Reigh, & Lessler, J., 2020). Second, the distance to the 
infection source is another determining factor in the spread 
of coronavirus. Although a 6-feet distance was initially 
suggested for social distancing measures, the current 
evidence shows that it depends on the exhalation action 
being performed by the agent-source. If the agent singing, 
or screaming, the distance the virus may travel is 
significantly longer (in the case of no PPE) compared to 
silent or talking agents (Jones et al., 2020).

COVID-19 recent research presents ample evidence on the 
impact of different surface materials on SARS-CoV-2
stability and persistence. SARS-CoV-2 virus, responsible 
of COVID-19 disease, has a longer stability on surface 
materials such as plastic, stainless steel, metal and wood 
compared to copper (Chin et al., 2020; Dietz et al., 2020; 
Kampf et al., 2020; van Doremalen et al., 2020).

Combining the effect of surface materials with 
environmental conditions, such as temperature, relative 
humidity levels, and light conditions presents a variation on 
SARS-CoV-2 stability on surfaces in a particular 
environment. For all materials, the virus stability is longer 
in lower temperatures (Casanova et al., 2010; Chin et al., 
2020; Pawar et al., 2020). Survival rates (half-lives) of 
SARS-CoV-2 at different temperatures range between 1.7 
and 2.7 days at 20 °C, reducing to less than 24 hours when 
temperature is elevated to 40 °C on some surfaces. 
(Riddell, S., Goldie, S., Hill, A. et al., 2020). The virus 
stability is also longer at low (10%-40%) and high (60%-
100%) relative humidity levels, and it is shorter at moderate 
relative humidity levels (40%-60%) (Dietz et al., 2020; 
Moriyama et al., 2020). Exposure to light and direct sunlight 
also decreases the coronavirus stability time (Schuit et al., 
2020). Stability could reach longer survival times, even 
weeks, in dark spaces (Riddell, S., Goldie, S., Hill, A. et al., 

2020). For example, common surfaces such as glass, 
stainless steel, paper and polymer banknotes at 20 °C, in 
dark conditions, allow virus stability for up to 28 days 
(Riddell et al., 2020). *Please, note that these studies were 
ran in laboratory conditions.

Also, the airborne diffusion of infected droplets can spread 
beyond the 6-feet distance (Setti et al., 2020). The 
coronavirus droplets can be transmitted through aerosols 
up to 23-27 feet at peak exhalation speeds (Bourouiba, 
2020; Guo et al., 2020). The virus survival time in the air is 
approximately 3 hours (van Doremalen et al., 2020), and 
the direction of air flow and airflow zoning also impacts the 
viral spread (CDC, 2020; Liu et al., 2020; Lu et al., 2020).

The above-mentioned studies emphasize the impact of 
building and environmental parameters on the virus 
spread. To this date, the existing SARS-CoV-2 spread 
modeling studies have not included such parameters in the 
simulation of the spread. Our study addresses this gap by 
creating and implementing a comprehensive 
spatiotemporal model which includes these viral 
characteristics, spatial parameters, as well as 
organizational schedules and their building occupancy 
patterns to understand the virus spread. The end goal is to 
provide design and organizational guidelines to help control 
the virus spread for reopening spaces.

METHODOLOGY
Spatiotemporal modeling integrates several modeling and 
simulation methods, combining spatial analytics with 
behavioral and building analytics, integrating operational 
parameters, and environmental characteristics. This 
research extends the spatiotemporal occupancy in building 
settings research by Gomez-Zamora (2017, 2019) For 
COVID-19 spread specification of spatiotemporal 
modeling, we included materials specifications and virus 
characteristics. This approach, however, can be applied to 
other analytics that requires time as a variable for spatial 
analytics. 

The spatiotemporal model superimposes four layers of 
information:
a. Spatial analytics (Figure 1)
b. Operational analytics (Figure 2)
c. Agent-based simulation (Figure 3) 
d. Virus characteristics and preventive policies

Figure 1. Most probable occupied spaces in red (Sample ICU 
layout: from Award Winning ICU Designs 1992-2012, Society of 
Critical Care Medicine).

In order to better understand the dynamics of COVID-19
spread within the built environments, we identified a set of 
parameters that have been proven to have an impact on 
the virus spread. The weight of each parameters is yet to 
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be determined. These parameters are categorized as Virus 
parameters, Behavior Parameters, and Building 
parameters. Building parameters include surface materials 
characteristics, exposure to direct sunlight layouts, most 
probable occupied areas, most probable circulations, 
ambient temperature and relative humidity level, as well as 
airflows dynamics. Behavior parameters include 
occupancy level, distance between users, schedule, time 
of occupancy, sequence of places visited, activity 
performed, and PPE level. Virus parameters include 
survival time on different materials, including air, by 
temperature, light and humidity, number of cases by total 
population in the area of the building, distance that the virus 
can travel due to particle size, and based on a specific 
action: silence, talking, sneezing, coughing, and screaming 
or signing (Jones et al, 2020).

MODELING PARAMETERS
The modeling strategy focused on implementing the 
parameters that play significant roles in the virus spread 
dynamic on a comprehensive multi-dimensional modeling 
approach that included the following parameters:

Building Parameters:
a. Layout
b. Probability of occupancy
c. Probability of surface touch 
d. Materials of surfaces (link to virus survival time)
e. Direct sunlight exposure (ranges)
f. Temperature and humidity levels (ranges)

Agents: 
a. Agent role (Doctor, Nurse, Patient, Visitor) 
b. Health status (Healthy or Sick (Spreader))
c. Sick agent: asymptomatic, mild symptoms, severe 
symptoms, or critical symptoms. The level of symptoms is 
linked to the period of time that the agent would act as a 
spreader (14 - 25 days).
d. PPE levels (No PEE, Level 1-5)
e. Distance from/to source (0 – 6 feet)
f. Time of exposure (exponentially increasing risk after 15 
min within 24 hours).

Virus Characteristics: 
a. Virus travel distance from the source, depending on 
particle size.
b. Time that a particle size floats in the air.
c. Survival time on materials and air (12 -72 hours)
d. Survival time under certain temperature, humidity, and 
lighting conditions (12hrs.-28 days).
e. Number of known COVID-19 cases by population, in the 
area of the building.
f. Asymptomatic/Symptomatic population distribution.

 
After identifying spatial, behavior and virus parameters 
from the review of current literature, we created an agent-
based simulation model that incorporates the above 
behavior parameters and ongoing workflows within the 
environment, in addition to virus characteristics, in different 
scenarios for risk comparison.

AGENT-BASED SIMULATION
We implemented a proof of concept of the spatiotemporal 
model using an intensive care unit (ICU). The inputs of our 
model included the ICU layout, spatial parameters, and 
patient care processes and staff workflows within the ICU 
representing the building operations. The care processes 

and workflows included standard patient care activities 
such as patient assessment, medication administration, 
nutrition delivery, and procedures. A set of agents were 
created to represent care team members including 6 
bedside nurses (responsible for direct patient care), a 
nurse manager (managing the unit), 2 doctors, 2 
respiratory specialists and a receptionist. The agents were 
set to move between different rooms and areas (patient 
rooms, central nurse stations, distributed nurse stations, 
clean utility rooms, medication room, nutrition room, 
storage, soiled utility, etc.) to perform their daily tasks.

 
Figure 2. Sample of sequence of activities and schedules of the 
healthcare operations

We simulated staff movements in the spaces (Figures 3 
and 4) and their interactions with the built environment 
such as touching various surfaces while working, and 
occupying spaces with different characteristics, associated 
with virus spread probability. The simulation model was 
created in a parametric environment (Grasshopper). For 
simulating the agents’ movements, we used PedSim Pro 
add-on (https://www.pedsim.net). 

For each agent, we defined a role and a set of tasks and 
destinations, as well as a set of attributes including the 
health status and PPE level. From the simulation, we 
extracted the agents’ positions in time (x, y, t). 

Figure 3. Agent’s movement path is shown with a grey line. The 
blue dot represents a healthy agent and the red dot a sick agent 
(radius of influence of 6-ft).

Figure 4. Paths generated by movement of agents in the overall 
simulation.
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Figure 5. Agent’s destinations and stops, Agent profiles; Simulation engine and Agents’ location extraction components in Grasshopper.

The agent’s health status is healthy or sick. A sick agent is 
defined as a virus spreader during a period of time. 
Spreaders could be symptomatic or asymptomatic, and the 
distribution of sickness levels over the total populations is 
determined by current research, as well as the viral load, 
per agent, over time, which is also determined by a specific 
statistical distribution (Kilpatrick, A.M., 2020). 

A healthy agent is defined as (virus) collector. The
probability of exposure of this agent depends on several 
factors, such as the time of exposure to virus sources 
(spreaders or contaminated air), the distance to the source, 
and probability of fomite contagion (surface-touch followed 
by face-touch). According to CDC Public Health guidelines 
for contact tracing, the probability of contagion risk for 
close contacts increase over time after 15 minutes of 
accumulated exposure within 24 hours (Appendices, 
cdc.gov). The aforementioned parameters are affected by 
ambient conditions, such as temperature, humidity levels, 
sunlight, as well as protective protocols such as use of 
PPE, frequent handwashing, air filtration and surface 
cleaning.

The simulation model integrates spatial and temporal 
parameters into a comprehensive model in Grasshopper 
(Figures 5), to generate two metrics as outputs of the 
model: 
a. The Probability of Spatial Viral Contamination is an attribute 

of space, assigned to a spatial cell (1 ft3), at a specific time. 
b. The Probability of Agent Exposure is an attribute of the agent, 

assigned to an agent at a specific location in time, calculated 
based on the sequence of activities and actions, and the 
spatial viral contamination.

We plan on testing several scenarios to compare the 
probabilities of virus contamination and agent exposure in 
buildings areas, as agents move through the space.

PRELIMINARY RESULTS
As this is a spatiotemporal modeling, the probability of virus 
contamination on air and surfaces varies over time, 
depending on the combination of parameters described in
the previous section. The probability of exposure of an 
agent is directly related to the sequence of activities and 
exposure to the contaminated spaces or sources, over a 
period of time. 

The probability of occupancy is modeled utilizing data from 
two sources, the spatial analyses of the layout and 
operational analytics. The probability of fomite 
contamination is calculated based on the probability of an 
infected agent touching a surface and data on virus 
survival time by material, at specific environmental 
conditions. The probabilities of a healthy agent’s risk of 
exposure is calculated based on the utilized PPE level, 
interaction with infection source (fomite or spreader), 
source contamination levels, actions performed, exposure 
time to the source. Synthetic parameters are generated 
based on studies conducted for other viruses where the 
data on SARS-CoV2 was unavailable. Exposure times 
necessary to inhale a critical number of virus particles are 
calculated based on the study conducted for seasonal 
cases of influenza (Yan et al., 2018).

In Table 1, the probability of agent risk of exposure due to 
a specific contaminated surface, during a period of time, is 
presented as an example. First, the probability of spatial 
viral contamination is calculated based on the time a 
spreader previously spent at that location, considering the 
probability of virus spread based on her health condition, 
PPE level, and action performed. The material type, 
ambient temperature and humidity (constant for this proof-
of-concept study), and frequency of cleaning, will be factors 
for the virus stability on that surface. Second, the 
calculation of probability of risk of a healthy agent spending 
time at the same location, includes the PPE level, action 
performed, time of exposure, and probability of face-touch. 
The final probability of risk for that agent is the 
accumulative probability over time, within 24 hours.

For this current spatiotemporal model, we defined five 
levels of PPE: 0: No PPE; 1: cloth mask; 2: surgical mask; 
3: N95 mask; 4: N95+shielding+gloves; Level 5: L4+cover. 
These levels and probabilities of spreading and contracting 
(the virus) are defined by current research. 

The final exposure score for the agent is calculated based 
on the accumulated time of exposure and the probability of 
exposure. The agent change status to sick when it scores 
100 (*this is a scale defined for this simulation only, and it 
does not directly apply to reality). Sensitivity analysis is not 
implemented in the current model. The concept of viral 
dosing also needs to be specified in the next research 
stage.
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Table 1. Sample of a Probability of Agent Exposure as it moves through space, at each time step (x, y, t).
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7 Nurse Healthy 0 0 16.5 -1.1 3 0.25 0.75 FALSE 0 3 >6 0 0
7 Nurse Healthy 0 1 16.5 -1.4 3 0.25 0.75 FALSE 0 3 >6 0 0
7 Nurse Healthy 0 2 16.5 -0.9 3 0.25 0.75 FALSE 0 3 >6 0 0
7 Nurse Healthy 0 3 16.4 -0.8 3 0.25 0.75 FALSE 0 3 >6 0 0
7 Nurse Healthy 0 4 16.4 -0.7 3 0.25 0.75 FALSE 0 3 >6 0 0
7 Nurse Healthy 0 5 16.4 -0.5 3 0.25 0.75 FALSE 0 3 >6 0 0
7 Nurse Healthy 0 6 16.4 -0.3 3 0.25 0.75 FALSE 0 3 3 0.25 0.18
7 Nurse Healthy 0 7 16.4 -0.1 3 0.25 0.75 TRUE 4 72 3 0.25 0.18
7 Nurse Healthy 0 8 16.4 0 3 0.25 0.75 TRUE 4 72 0 0.75 0.56
7 Nurse Healthy 0 9 16.4 0.2 3 0.25 0.75 TRUE 4 72 0 0.75 0.56
7 Nurse Healthy 0 10 16.4 0.4 3 0.25 0.75 TRUE 4 72 0 0.75 0.56

DISCUSSION
This artcile presents a comprehensive spatiotemporal 
modeling approach for understangind the dynamics in a 
built environment, comprising building analytics and 
organizational analytics, including human behavior. This 
particular application extends the spatiotemporal modeling 
research towards COVID-19 spread, through space,
surfaces and agents. This specific model is loaded with 
virus characteristics, with the purpose of creating a 
parametric model for understanding the sensitivity of the 
built environment and human behavior variables on the 
COVID-19 spread. The end-goal is to help define spatial 
and organizational guidelines for safe re-opening of 
spaces. Even though this research is specifically in 
Healthcare, the implementation approach can be extended 
to any architectural programs.

The outcomes of this research include the probability of 
COVID-19 spread and agents’ exposure, based on a set of 
given paramters (listed in the Modeling Parameters 
section) for a certain layout. The proposed spatiotemporal 
model  provides a framework to evaluate various design 
and operational scenarios, with the purpose of  
understanding which strategies would more effectively  
help reduce virus exposure by providing design changes or 
preventative protocols (i.e. cleaning frequency, new 
physical barriers, and circulation direction). 

As none of the existing software allows the integration of 
such expert knowledge, we designed the spatiotemporal 
modeling approach based on spatial modeling integrated 
with agent-based models. We customized the existing 
platforms to integrate both, spatial and agent modeling, 
with environmental attributes and virus characterization 
models, described in the previous sections. The current 
spatiotemporal modeling of COVID-19 spread includes
most of the building and environmental factors. These 
factors will probablly update as most current research on 
SARS-CoV-2 becomes avaiblale. Therefore, the proposed 
framwork is parametric, allowing the integration of 
additional and updated parameters, changing the 
threshoulds and the sensitivity of the parameters as the 
COVID-19 research refines and expands. One challenge 
we forsee is the validation of this approach with real data.
For overcoming this challenge, we propose that the owners 
and users can parametrcially define the design and 

organizational modifications they would like to implement,
to analyze possible scenarios, and compare the risk.

Future work includes another modeling layer: airflow 
dynamics, implemented using a Computational Fluid 
Dynamics (CFD) approach. The purpose is to include the 
most recent, yet controversial, evidence on aerosols 
spread, as it has been recently identified as one of the 
dominand route for the  transmission of SARS-CoV-2
(Zhang, R., Li, Y., Zhang, A. L., Wang, Y., and Molina, M. 
J., 2020). Future research also includes the analysis of two 
types of HVAC systems, and their impact on airflow 
dynamics, as it modifies our calculations on virus spread 
probabilities. This analytics will offer a third level of 
solutions for controlling the spread: Technical solutions.
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