

What can Colors and Shapes Tell about Generative
Adversarial Networks?

Can Uzun

Altınbaş University, Turkey
can.uzun@altinbas.edu.tr

Abstract. The study aims to understand the how’s and what’s of creating an
architectural dataset for generative adversarial nets through the evaluation of the
effects of colors and shapes in image datasets on generative adversarial nets.
Throughout the paper, six generative adversarial network training sessions are
conducted on DCGAN and context-encoder algorithms with three different datasets
having different complexities for colors and shapes. Firstly the color and shape
complexities are analyzed for datasets. For color complexity, heuristic analyze is
applied and for shape complexity, gray level occurrence matrix entropy which gives the
textural complexity is utilized. In the end, the complexities and the training results are
evaluated. Results show that color complexity has an important role for generative
adversarial networks to generate colors correctly. Regularity in shape complexity /gray
level co-occurrence matrix entropy distribution facilitates the algorithm training and
shape generating processes.

Keywords: GAN, Color, Shape, Texture, Architectural Dataset

1 Introduction

Generative adversarial network (GAN) is an unsupervised, generative
algorithm in which two functions are in a race to fool eachother to generate
the realistic results mimicing the training dataset (Goodfellow et al., 2014).
GAN algorithm has taken its place as one of the most powerful algorithms in
visual data generation. With this potential for visual data, the number of
research on GAN within visual arts and architecture has increased (Shen et
al., 2020; Chan & Spaeth, 2020). Despite numerous studies on GAN in
architecture, there are few studies on the evaluation of GAN’s working
process, its outputs, its relation between the archcitectural training dataset
(Xu et al., 2018; Borji, 2019; Gulrajani et al., 2020). In this paper, the focus will
be on colors, shapes, and their relation with GAN efficiency to understand the

161

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

mailto:can.uzun@altinbas.edu.tr

nature of dataset creation for design problems. Haralick et al. (1973) says
shapes are a part of textural features. Througout the paper, “shapes” will refer
to the textural feature of the image dataset.

Color and textural/shape qualities are two important determinative
properties of architectural space. Human perceives and experiences the
architectural space with its color and textural features (Zobel, 1995). Besides
having experiential effects, these architectural properties give the
characteristic of the architecture (Wake& McCullogh, 1991). The textures and
color scheme of baroque architecture are different from traditional Japanese
architecture. Ottoman architecture has no common textural properties with
modern architecture. Color and textural properties are inseparable qualities of
architecture. Color gives substance, material information, but it is not enough
by itself. Textural information is a complementary feature of architectural
space. Gibson (1986) defines texture as centimetric and millimetric precision
of a fine structure of the surrounding. According to Gibson (1986), the textural
feature has two subclasses; layout texture, and pigment texture. The layout
texture is three-dimensional topological features of the object, while pigment
texture is insensitive to the three dimensions of the geometry. Pigment texture
is the sum of color patterns. In this text, to understand the shape complexity
the pigment texture quality of the images will be evaluated.

While creating an architectural dataset for training with GAN; color, and
the textural qualities must be considered detailly. Not only do these qualities
have the characteristic and perceptual experience of architectural space but
also characteristics and perceptual features of the dataset will affect. The
dataset is the input for generative networks. Training results/ outputs and
efficiency of generative network will be affected by the characteristic of the
architectural dataset.

This paper aims to understand the effect of the shape complexity through
textural feature complexity and color complexity on generative adversarial
networks. So GAN training experiments will be conducted with datasets with
varying color and shape complexities.

2 Methodology

This study conducts six different training sessions with three datasets with
different colors, shapes, and different textural complexity levels, with two
different algorithms. Before the training sessions, the color and shape/ textural
complexities of datasets were analyzed. After training the algorithms, the
outputs and the training process are compared and evaluated to understand
the effects of the color and the shape. Two different algorithms were trained
for each dataset to check the reliability of correlation (if there is any
correlation) between the algorithm efficiency and the color, shape/textural
complexity features.

162

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

2.1 Dataset

Three datasets are utilized in the training sessions. The datasets are El
Korci’s (2020) colored circle dataset, red color repeating geometric patterns
dataset, and artist Devrim Erbil’s Istanbul abstract silhouettes dataset (Figure
1). Each dataset has a shape of 300x128x128x3. In this image
shape, 300 denotes the number of data/images in one dataset
while 128x128 defines pixel resolution of one image, and 3 is for the red,
green, blue (RGB) color channel.

Figure 1. From left to right: Circle dataset (El Korci, 2020), Pattern Dataset (Source:
Author), Devrim Erbil Dataset (Erbil, 2020).

All these datasets look too different to compare. But when it comes to the

inner structure of the images, we can analyze and compare these different
datasets. First of the comparisons can be done with the colors. Color
complexities can be easily compared by merely visual perception. The second
feature can be the textural feature of the dataset to understand the shape
complexity. But for shape complexity, rather than relying on perception, gray
level co-occurrence matrix (GLCM) entropy is utilized. GLCM shows the
complexity level of the textures on images.

Color complexity: The color complexity of each dataset is pure to
perception. I simply count the colors to understand the color complexity of an
image. If an image has only two colors then the color complexity is two. But if
there are more than two colors, the color complexity defined as more than
two. These color complexity definitions are enough to compare these
datasets. But if datasets in training sessions were similar, this method could
be problematic. On the other hand, to measure the color complexity of an
image, I look at the color complexity per image in the dataset and for the
entire dataset. A single image in a dataset may have only one color value. In
the dataset, each image can be in a different color. This can increase the
color complexity of the entire dataset.

The pattern dataset has only one color/red for all single images in the
dataset. So the color complexity of the pattern dataset per image and for the
entire dataset is the same and one. The color complexity of the Erbil dataset
is more than two per image and for the whole dataset. The color complexity of
the circle dataset per image is two, while the color complexity of the entire
circle dataset is more than two. In descending order, the color complexity per
image is Erbil, circle, and pattern dataset. For the color complexity of the
entire dataset, Erbil and circle have equal values (more than two color

163

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

values), and the color complexities of the pattern dataset are the smallest
(Table 1).
Table 1. The Color Complexity per Image and the Color Complexity for Entire Dataset

 Color Complexity per Image Color Complexity for Entire Dataset
Circle 2 More than 2
Pattern 1 1
Erbil More than 2 More than 2

Shape/Texture complexity: We may evaluate the complexity levels of

shapes in the dataset heuristically. But the inner structure of the shape
information may say something different. To be objective on the shape
complexity analysis, I used GLCM entropy for all datasets. Haralick et al.
(1973) support the idea that the classification of images can benefit from this
textural feature of images. Gray level co-occurrence matrix entropy is one of
the methods that qualify the complexity level of the textural information of
image data (Haralick et al., 1973). To evaluate the shape complexity, the
textural features are analyzed with GLCM entropy. GLCM is a calculation
result of the distribution of co-occurring pixels in an image. Not only this
occurrence is creating the textural feature, but it is the structure of the shapes
in the image.

Figure 2 shows GLCM calculation results for all the images in three
datasets. The values of GLCM entropy for Erbil and circle datasets values for
all images spread all around the graph almost homogeneously. But the
numeric values of GLCM entropy for the Erbil dataset are higher than the
circle dataset. Pattern dataset has uniquely different values for GLCM
entropy. All the GLCM values for the pattern dataset are lined on a curvy path
rather than spreading all around the graph homogeneously. But the
cumulative numeric values of the GLCM entropy of the pattern dataset are
higher than the circle dataset and lower than the Erbil dataset. Numeric
GLCM values in descending order for the shape/textural complexity among
datasets are Erbil dataset, pattern dataset, and circle dataset.

Figure 2. Shape Complexity Distrubution with GLCM Entropy. (Source: Author).

164

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

2.2 Algorithm Architecture

In the training sessions, DCGAN and context-encoder algorithms were
utilized. Both these algorithms are generative algorithms that have both
generator and discriminator functions. The discriminator function tries to
recognize the real and fake images. The generator function tries to generate
fake images to fool the discriminator function. If the generator function
succeeds, the algorithm can generate fake but indistinguishable images from
their originals. DCGAN generates the whole image surface. The context-
encoder algorithm works in the masked part of the image and the context-
encoder generates an image part coherent to the entire image.
DCGAN: The architecture of DCGAN has generator and discriminator
functions which are created with convolutional layers. The generator function
consists of four Conv2D transpose layers for upsampling the resolution and
leakyReLU for activation function, in the last layer there is one Conv2D layer
and tanh is used for the last layer activation function. Discriminator consists
of Conv2D layers with leaky ReLU activation function with a dropout in the last
layer and completed with sigmoid activation function (Figure 3).

Figure 3. DCGAN Architecture. (Source: Author).

Context-Encoder: Context encoder has generator and discriminator functions.
The generator function has an encoder and a decoder part. The encoder part
has five conv2D Transpose layers with LeakyReLU activation functions. The
last three of these layers have also batch normalization. The decoder part has
five upsampling layers and conv2D layer with ReLU activation function
and Batch normalization. The last two of these layers have batch
normalization. Sigmoid is used for the last layer’s activation function (Figure
4).

165

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

Figure 4. Context Encoder Architecture. (Source: Author).

2.3 Evaluation Methodology

The evaluation methods of the outputs of GAN algorithm are respectively;
heuristic evaluation and Frechet Inception Distance (FID) score evaluation.
The heuristic is a subjective and qualitative evaluation method, while FID
score evaluation is objective and quantitative method.

3 Training Experiments

For all training experiments, Google Colab which is a free notebook for
executing python codes was utilized. Each datasets were trained on tensor
processing unit (TPU) service which Colab provides freely. With the help of
TPU, all the training sessions took almost two hours. In both DCGAN and
context-encoder training sessions, consecutively circle, pattern, and Erbil
datasets are utilized. For each dataset algorithm was trained for 1000 epoch
with a batch size of 30. For every ten epoch, generated visuals were saved,
and for every epoch discriminator and generator loss values were saved.
There was no issue detected as over-fitting, vanishing gradient, or mode
collapse, which are the main problems of GAN algorithm. The loss values of
discriminator and generator are mostly balanced.

Figure 5. DCGAN Outputs (After 1000 Epoch Training). (Source: Author).

166

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

Figure 5 and figure 6 show four samples for each training session results by
DCGAN and context-encoder. In figure 5, DCGAN generated the entire visual
scene while the context-encoder generated only the masked/hidden parts of
the images. In figure 6, we can see some blurry square regions. These parts
are the prediction of context-encoder for masked regions of the images.

Figure 6. Context Encoder Outputs (After 1000 Epoch Training). (Source: Author).

4 Colors and Shapes Evaluation

4.1 Heuristic Evaluation

Borji (2019) says that qualitative evaluation methods are biased and can be
sometimes misleading however; these methods are often used for GAN
evaluation as these methods are fast. So heuristic evaluation will be
questionable, but it may give some quick perceptual insights for the evaluation
of GAN besides the relation between color, shapes, and the GAN algorithm.
Rating method is 2 and 3-point likert scale for evaluating and comparing the
respectively color and shape outputs of the training sessions. If the algorithm
is successful in generating colors, the algorithm gets one otherwise zero. For
the success of the algorithm in generating the shapes, the rating scale starts
with 0 (the worst session), continues with 1, and ends with 2 (the best
session) (Table 2).

Table 2. Heuristic Rating for Success of Training Sessions

Heuristic Rating for
Training Success

DCGAN Context Encoder
Color Shape Color Shape

Circle Dataset 0 0 1 1

Pattern Dataset 1 2 1 2

Erbil Dataset 0 1 1 0

167

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

 In DCGAN training sessions, the pattern dataset training is the most
successful one in generating colors. Pattern dataset is the best one in shape
generation too. Circle and Erbil datasets are not successful in generating
colors, but the Erbil dataset is better than the circle dataset in generating
“shapes. Heuristically in DCGAN training sessions, the best one is the pattern
dataset, secondly, the Erbil dataset and the worst one is the circle dataset.

Context-encoder could generate the colors almost right for all datasets. But
for the shape feature, the best one is the pattern dataset, and the worst one is
the Erbil dataset. In context-encoder training, the best one is the pattern, the
second, circle, and the worst one is the Erbil dataset.

We can see that the best training session for both algorithms is pattern
dataset training. And the worst one changes accordingly to the training
algorithm.

4.2 Frechet Inception Distance Evaluation

Frechet Inception Distance (FID) is one of the quantitative evaluation methods
for GAN algorithms. FID compares the training data and the data generated
by GAN, and this comparison result is a numeric value that shows how big the
dissimilarity of generated image and the training data (Borji, 2019). FID
algorithm takes two different datasets and calculates a feature probability
distribution for each dataset (Brownlee, 2019). The difference between these
probability distributions is the FID score. All the features (color values based
on pixel locations) in an image-based dataset represent a vector. Training
dataset and generated data have these features as vectors. The ‘distance’
between these vectors is called FID. If the FID score is big, the similarity
between the two vectors is low. When the FID score is small, two vectors are
similar to each other. But for good efficiency in the GAN algorithm, the FID
score should not be zero. If FID score is zero, it means that during the training
process, an over-fitting issue occurs. So we want FID score to be small
enough.

Figure 7. FID Scores for DCGAN and Context-Encoder. (Source: Author).

For each training session, the FID scores are calculated for every 200

epoch (Figure 7). We can see that FID scores are quite big for each training
session. The small sample size (generated and real data) can cause these big

168

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

numbers. But still, we can track the changes in FID scores by epoch in figure
8.

DCGAN_Erbil training session obtained the least FID score and the
DCGAN_Pattern had the biggest FID score. For context-encoder pattern
dataset had the smallest FID score, while Erbil having the biggest FID score.
But we should look at the total change of FID score from the first epoch to the
last epoch rather than only looking at the last score. Table 3 shows these
differences between the first epoch FID and the last epoch FID scores.

Table 3. FID Scores by epoch and FID Difference Between First and Last Epoch

Algorithm Dataset
FID Score by Epoch FID Difference

Between First
and Last Epoch 1 200 400 600 800 1000

DCGAN

Circle 337,900 534,212 429,215 427,359 440,27 391,230 -53,330

Pattern 486,226 415,775 327,558 412,028 375,279 396,768 89,458

Erbil 412,930 457,620 359,923 312,867 341,697 343,409 69,521

Context_Encoder

Circle 262,603 312,473 342,179 275,255 243,686 245,450 17,153

Pattern 288,268 274,358 243,693 305,042 222,902 188,839 99,429

Erbil 249,544 273,685 333,749 264,861 245,287 305,929 -56,385

According to FID difference scores, in DCGAN training sessions, the pattern
dataset is the best one. Circle training session becomes the worst one,
moreover, after 1000 epoch, circle training FID scores increased. In context-
encoder training, after 1000 epoch Erbil training session FID score increased.
So the worst one is Erbil dataset training in context encoder. The second
unsuccessful one is the circle training session, while the best training session
is the pattern dataset training.

5 Results

Heuristic evaluation and FID scores say that regardless of DCGAN or context-
encoder algorithm, the pattern dataset training gets the highest evaluation
scores. But the lowest evaluation scores change accordingly to the algorithm
type.

Effects of colors: In DCGAN training, color complexity affected color
generation. It is obvious that if the color complexity is one, the algorithm can
be successful in generating colors. If the color complexity is two or more than
two per image or the entire dataset it may affect the color generation
negatively in DCGAN. In context-encoder, color complexity for the entire

169

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

dataset is not that much important, as the algorithm is focusing on the context
of the single image. So context-encoder is better than DCGAN in generating
colors regardless of the color complexities. We can understand that algorithm
has an important role in generating colors, secondly, the color complexity is
affecting the outputs too. But it is not obvious how the color complexity per
image or entire dataset or both of them affect the algorithms.

Effects of shapes: GLCM entropy shows the textural complexity levels. As
textural complexity includes a spatial feature (co-occurrence of pixel values) it
has information about shapes too. In shape generation, according to heuristic
and FID score evaluation, the pattern dataset gets the highest scores in
DCGAN and context-encoder sessions, even the pattern dataset has the
second biggest GLCM entropy value. GLCM entropy results show that there is
no direct relationship between the numeric GLCM entropy values with the
algorithm outputs, instead, the distribution of the GLCM entropy values affects
the training. GLCM distribution of the pattern dataset has a continuous path
one after another that creates a regularity in change. In training sessions, if
there is a regular change in the dataset, the algorithm training session
became successful.

6 Conslusion

Results shows that the color and shapes complexities are critical for
selecting the dataset for GAN training sessions. Color complexity has
negative correlation between DCGAN outputs success but the correlation is
weak in context encoder. For the shape complexity among DCGAN and
context-encoder training sessions, rather than the numeric shape complexity
values for each image, the regularity of the shapes in the entire dataset is
affecting the generative algorithm.

This findings opens up valuable questions in terms of architectural dataset
creation. What kind of color complexities do we have in architectural
datasets? What is regularity in architecture? What is a regular architectural
dataset? Is it possible to create a regular dataset of architecture? Is this
regularity a trap for creating the same typological outputs for architecture with
GAN algorithms? With the lead of all these results and questions, we can say
the problem of complexity in architectural dataset is a potential and important
research area for GAN algorithms in architecture.

References

Borji, A. (2019). Pros and cons of gan evaluation measures. Computer Vision and
Image Understanding, 179, 41-65.

Brownlee, J. (August 30, 2019). How to Implement the Frechet Inception Distance
(FID) for Evaluating GANs [Web blog]. Retrieved: November 11, 2019, from:

170

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

https://machinelearningmastery.com/how-toimplement-the-frechet-inception-
distance-fid-from-scratch/

Chan, Y. E., & Spaeth, A. B. (2020). Architectural Visualisation with Conditional
Generative Adversarial Networks.-What machines read in architectural sketches.
Education and research in Computer Aided Architectural Design in Europe
(eCAADe) Conference 2020, Berlin, Germany.

El Korchi, A. (2020). “2D geometric shapes dataset ”, Mendeley Data, V1, DOI:
10.17632/wzr2yv7r53.1

Erbil, D. (2020, February 8). Yağlı Boyalar. Retrieved October 7, 2021, from
https://www.devrimerbil.com/yagli-boyalar/.

Gibson, J. J. (1986). The ecological approach to visualperception. Westport, CT:
Greenwood Press

Gulrajani, I., Raffel, C., & Metz, L. (2020). Towards GAN benchmarks which require
generalization. arXiv preprint arXiv:2001.03653.

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image
classification. IEEE Transactions on systems, man, and cybernetics, (6), 610-621.

Goodfellow, I. Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y. (2014). Proceedings of the International Conference on
Neural Information Processing Systems (NIPS 2014). pp. 2672–2680.

Shen, J., Liu, C., Ren, Y., & Zheng, H. (2020). Machine Learning Assisted Urban
Filling. Education and research in Computer Aided Architectural Design in Europe
(eCAADe) Conference 2020, Berlin, Germany.

Wake, W. K., & McCullough, M. (1991, October). Architectural Tours through Texture
Space. In Rcnlilv nnd Virtual Reality: ACADIA Conference Proceedings (pp. 91-
53).

Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., & Weinberger, K. (2018). An
empirical study on evaluation metrics of generative adversarial networks. arXiv
preprint arXiv:1806.07755.

Zobel Jr, R. W. (1995). The representation of experience in architectural
design. Presence: Teleoperators & Virtual Environments, 4(3), 254-266.

171

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

