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Abstract. The study aims to understand the how’s and what’s of creating an 
architectural dataset for generative adversarial nets through the evaluation of the 
effects of colors and shapes in image datasets on generative adversarial nets. 
Throughout the paper, six generative adversarial network training sessions are 
conducted on DCGAN and context-encoder algorithms with three different datasets 
having different complexities for colors and shapes. Firstly the color and shape 
complexities are analyzed for datasets. For color complexity, heuristic analyze is 
applied and for shape complexity, gray level occurrence matrix entropy which gives the 
textural complexity is utilized. In the end, the complexities and the training results are 
evaluated. Results show that color complexity has an important role for generative 
adversarial networks to generate colors correctly. Regularity in shape complexity /gray 
level co-occurrence matrix entropy distribution facilitates the algorithm training and 
shape generating processes. 
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1 Introduction 

Generative adversarial network (GAN) is an unsupervised, generative 
algorithm in which two functions are in a race to fool eachother to generate 
the realistic results mimicing the training dataset (Goodfellow et al., 2014). 
GAN algorithm has taken its place as one of the most powerful algorithms in 
visual data generation. With this potential for visual data, the number of 
research on GAN within visual arts and architecture has increased (Shen et 
al., 2020; Chan & Spaeth, 2020). Despite numerous studies on GAN in 
architecture, there are few studies on the evaluation of GAN’s working 
process, its outputs, its relation between the archcitectural training dataset 
(Xu et al., 2018; Borji, 2019; Gulrajani et al., 2020). In this paper, the focus will 
be on colors, shapes, and their relation with GAN efficiency to understand the 
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nature of dataset creation for design problems. Haralick et al. (1973) says 
shapes are a part of textural features. Througout the paper, “shapes” will refer 
to the textural feature of the image dataset. 

Color and textural/shape qualities are two important determinative 
properties of architectural space. Human perceives and experiences the 
architectural space with its color and textural features (Zobel, 1995). Besides 
having experiential effects, these architectural properties give the 
characteristic of the architecture (Wake& McCullogh, 1991). The textures and 
color scheme of baroque architecture are different from traditional Japanese 
architecture. Ottoman architecture has no common textural properties with 
modern architecture.  Color and textural properties are inseparable qualities of 
architecture. Color gives substance, material information, but it is not enough 
by itself. Textural information is a complementary feature of architectural 
space. Gibson (1986) defines texture as centimetric and millimetric precision 
of a fine structure of the surrounding. According to Gibson (1986), the textural 
feature has two subclasses; layout texture, and pigment texture. The layout 
texture is three-dimensional topological features of the object, while pigment 
texture is insensitive to the three dimensions of the geometry. Pigment texture 
is the sum of color patterns. In this text, to understand the shape complexity 
the pigment texture quality of the images will be evaluated. 

While creating an architectural dataset for training with GAN;  color, and 
the textural qualities must be considered detailly. Not only do these qualities 
have the characteristic and perceptual experience of architectural space but 
also characteristics and perceptual features of the dataset will affect. The 
dataset is the input for generative networks. Training results/ outputs and 
efficiency of generative network will be affected by the characteristic of the 
architectural dataset.  

This paper aims to understand the effect of the shape complexity through 
textural feature complexity and color complexity on generative adversarial 
networks. So GAN training experiments will be conducted with datasets with 
varying color and shape complexities. 

2 Methodology 

This study conducts six different training sessions with three datasets with 
different colors, shapes, and different textural complexity levels, with two 
different algorithms. Before the training sessions, the color and shape/ textural 
complexities of datasets were analyzed. After training the algorithms, the 
outputs and the training process are compared and evaluated to understand 
the effects of the color and the shape. Two different algorithms were trained 
for each dataset to check the reliability of correlation (if there is any 
correlation) between the algorithm efficiency and the color, shape/textural 
complexity features. 
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2.1 Dataset 

Three datasets are utilized in the training sessions. The datasets are El 
Korci’s (2020) colored circle dataset, red color repeating geometric patterns 
dataset, and artist Devrim Erbil’s Istanbul abstract silhouettes dataset (Figure 
1). Each dataset has a shape of 300x128x128x3. In this image 
shape, 300 denotes the number of data/images in one dataset 
while 128x128 defines pixel resolution of one image, and 3 is for the red, 
green, blue (RGB) color channel. 
 

 
 

Figure 1. From left to right: Circle dataset (El Korci, 2020), Pattern Dataset (Source: 
Author), Devrim Erbil Dataset (Erbil, 2020). 

 
All these datasets look too different to compare. But when it comes to the 

inner structure of the images, we can analyze and compare these different 
datasets. First of the comparisons can be done with the colors. Color 
complexities can be easily compared by merely visual perception. The second 
feature can be the textural feature of the dataset to understand the shape 
complexity. But for shape complexity, rather than relying on perception, gray 
level co-occurrence matrix (GLCM) entropy is utilized. GLCM shows the 
complexity level of the textures on images.  

Color complexity: The color complexity of each dataset is pure to 
perception. I simply count the colors to understand the color complexity of an 
image. If an image has only two colors then the color complexity is two. But if 
there are more than two colors, the color complexity defined as more than 
two. These color complexity definitions are enough to compare these 
datasets. But if datasets in training sessions were similar, this method could 
be problematic. On the other hand, to measure the color complexity of an 
image, I look at the color complexity per image in the dataset and for the 
entire dataset. A single image in a dataset may have only one color value. In 
the dataset, each image can be in a different color. This can increase the 
color complexity of the entire dataset. 

The pattern dataset has only one color/red for all single images in the 
dataset. So the color complexity of the pattern dataset per image and for the 
entire dataset is the same and one. The color complexity of the Erbil dataset 
is more than two per image and for the whole dataset. The color complexity of 
the circle dataset per image is two, while the color complexity of the entire 
circle dataset is more than two. In descending order, the color complexity per 
image is Erbil, circle, and pattern dataset. For the color complexity of the 
entire dataset, Erbil and circle have equal values (more than two color 
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values), and the color complexities of the pattern dataset are the smallest 
(Table 1). 
Table 1. The Color Complexity per Image and the Color Complexity for Entire Dataset 

 Color Complexity per Image Color Complexity for Entire Dataset 
Circle 2  More than 2 
Pattern 1 1 
Erbil More than 2 More than 2 

 
Shape/Texture complexity: We may evaluate the complexity levels of 

shapes in the dataset heuristically. But the inner structure of the shape 
information may say something different. To be objective on the shape 
complexity analysis, I used GLCM entropy for all datasets. Haralick et al. 
(1973) support the idea that the classification of images can benefit from this 
textural feature of images. Gray level co-occurrence matrix entropy is one of 
the methods that qualify the complexity level of the textural information of 
image data (Haralick et al., 1973). To evaluate the shape complexity, the 
textural features are analyzed with GLCM entropy. GLCM is a calculation 
result of the distribution of co-occurring pixels in an image. Not only this 
occurrence is creating the textural feature, but it is the structure of the shapes 
in the image.  

Figure 2 shows GLCM calculation results for all the images in three 
datasets. The values of GLCM entropy for Erbil and circle datasets values for 
all images spread all around the graph almost homogeneously. But the 
numeric values of GLCM entropy for the Erbil dataset are higher than the 
circle dataset. Pattern dataset has uniquely different values for GLCM 
entropy. All the GLCM values for the pattern dataset are lined on a curvy path 
rather than spreading all around the graph homogeneously. But the 
cumulative numeric values of the GLCM entropy of the pattern dataset are 
higher than the circle dataset and lower than the Erbil dataset. Numeric 
GLCM values in descending order for the shape/textural complexity among 
datasets are Erbil dataset, pattern dataset, and circle dataset.  
 

 
 

Figure 2. Shape Complexity Distrubution with GLCM Entropy. (Source: Author). 
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2.2 Algorithm Architecture 

In the training sessions, DCGAN and context-encoder algorithms were 
utilized. Both these algorithms are generative algorithms that have both 
generator and discriminator functions. The discriminator function tries to 
recognize the real and fake images. The generator function tries to generate 
fake images to fool the discriminator function. If the generator function 
succeeds, the algorithm can generate fake but indistinguishable images from 
their originals. DCGAN generates the whole image surface. The context-
encoder algorithm works in the masked part of the image and the context-
encoder generates an image part coherent to the entire image.  
DCGAN: The architecture of DCGAN has generator and discriminator 
functions which are created with convolutional layers. The generator function 
consists of four Conv2D transpose layers for upsampling the resolution and 
leakyReLU for activation function, in the last layer there is one Conv2D layer 
and tanh is used for the last layer activation function. Discriminator consists 
of Conv2D layers with leaky ReLU activation function with a dropout in the last 
layer and completed with sigmoid activation function (Figure 3). 

 
Figure 3. DCGAN Architecture. (Source: Author). 

 
Context-Encoder: Context encoder has generator and discriminator functions. 
The generator function has an encoder and a decoder part. The encoder part 
has five conv2D Transpose layers with LeakyReLU activation functions. The 
last three of these layers have also batch normalization. The decoder part has 
five upsampling layers and conv2D layer with ReLU activation function 
and Batch normalization. The last two of these layers have batch 
normalization. Sigmoid is used for the last layer’s activation function (Figure 
4).  
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Figure 4. Context Encoder Architecture. (Source: Author). 

2.3 Evaluation Methodology 

The evaluation methods of the outputs of GAN algorithm are respectively; 
heuristic evaluation and Frechet Inception Distance (FID) score evaluation. 
The heuristic is a subjective and qualitative evaluation method, while FID 
score evaluation is objective and quantitative method. 

3 Training Experiments 

For all training experiments, Google Colab which is a free notebook for 
executing python codes was utilized. Each datasets were trained on tensor 
processing unit (TPU) service which Colab provides freely. With the help of 
TPU, all the training sessions took almost two hours. In both DCGAN and 
context-encoder training sessions, consecutively circle, pattern, and Erbil 
datasets are utilized. For each dataset algorithm was trained for 1000 epoch 
with a batch size of 30. For every ten epoch, generated visuals were saved, 
and for every epoch discriminator and generator loss values were saved. 
There was no issue detected as over-fitting, vanishing gradient, or mode 
collapse, which are the main problems of GAN algorithm. The loss values of 
discriminator and generator are mostly balanced. 

 

 
 

Figure 5. DCGAN Outputs (After 1000 Epoch Training). (Source: Author). 
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Figure 5 and figure 6 show four samples for each training session results by 
DCGAN and context-encoder. In figure 5, DCGAN generated the entire visual 
scene while the context-encoder generated only the masked/hidden parts of 
the images. In figure 6, we can see some blurry square regions. These parts 
are the prediction of context-encoder for masked regions of the images. 
 

 
 

Figure 6. Context Encoder Outputs (After 1000 Epoch Training). (Source: Author). 

4 Colors and Shapes Evaluation 

4.1 Heuristic Evaluation 

Borji (2019) says that qualitative evaluation methods are biased and can be 
sometimes misleading however; these methods are often used for GAN 
evaluation as these methods are fast. So heuristic evaluation will be 
questionable, but it may give some quick perceptual insights for the evaluation 
of GAN besides the relation between color, shapes, and the GAN algorithm.  
Rating method is 2 and 3-point likert scale for evaluating and comparing the 
respectively color and shape outputs of the training sessions. If the algorithm 
is successful in generating colors, the algorithm gets one otherwise zero. For 
the success of the algorithm in generating the shapes, the rating scale starts 
with 0 (the worst session), continues with 1, and ends with 2 (the best 
session) (Table 2). 
 
Table 2. Heuristic Rating for Success of Training Sessions 

Heuristic Rating for 
Training Success 

DCGAN Context Encoder 
Color  Shape Color Shape 

Circle Dataset 0 0 1 1 

Pattern Dataset 1 2 1 2 

Erbil Dataset 0 1 1 0 
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     In DCGAN training sessions, the pattern dataset training is the most 
successful one in generating colors. Pattern dataset is the best one in shape 
generation too. Circle and Erbil datasets are not successful in generating 
colors, but the Erbil dataset is better than the circle dataset in generating 
“shapes. Heuristically in DCGAN training sessions, the best one is the pattern 
dataset, secondly, the Erbil dataset and the worst one is the circle dataset. 

Context-encoder could generate the colors almost right for all datasets. But 
for the shape feature, the best one is the pattern dataset, and the worst one is 
the Erbil dataset. In context-encoder training, the best one is the pattern, the 
second, circle, and the worst one is the Erbil dataset. 

We can see that the best training session for both algorithms is pattern 
dataset training. And the worst one changes accordingly to the training 
algorithm. 

4.2 Frechet Inception Distance Evaluation 

Frechet Inception Distance (FID) is one of the quantitative evaluation methods 
for GAN algorithms. FID compares the training data and the data generated 
by GAN, and this comparison result is a numeric value that shows how big the 
dissimilarity of generated image and the training data (Borji, 2019). FID 
algorithm takes two different datasets and calculates a feature probability 
distribution for each dataset (Brownlee, 2019). The difference between these 
probability distributions is the FID score. All the features (color values based 
on pixel locations) in an image-based dataset represent a vector. Training 
dataset and generated data have these features as vectors. The ‘distance’ 
between these vectors is called FID. If the FID score is big, the similarity 
between the two vectors is low. When the FID score is small, two vectors are 
similar to each other. But for good efficiency in the GAN algorithm, the FID 
score should not be zero. If FID score is zero, it means that during the training 
process, an over-fitting issue occurs. So we want FID score to be small 
enough. 

 
 

Figure 7. FID Scores for DCGAN and Context-Encoder. (Source: Author). 
 
For each training session, the FID scores are calculated for every 200 

epoch (Figure 7). We can see that FID scores are quite big for each training 
session. The small sample size (generated and real data) can cause these big 
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numbers. But still, we can track the changes in FID scores by epoch in figure 
8.   

DCGAN_Erbil training session obtained the least FID score and the 
DCGAN_Pattern had the biggest FID score. For context-encoder pattern 
dataset had the smallest FID score, while Erbil having the biggest FID score. 
But we should look at the total change of FID score from the first epoch to the 
last epoch rather than only looking at the last score. Table 3 shows these 
differences between the first epoch FID and the last epoch FID scores. 

 
Table 3. FID Scores by epoch and FID Difference Between First and Last Epoch 

Algorithm Dataset 
FID Score by Epoch FID Difference 

Between First 
and Last Epoch 1 200 400 600 800 1000 

DCGAN 

Circle 337,900 534,212 429,215 427,359 440,27 391,230 -53,330 
 

Pattern 486,226 415,775 327,558 412,028 375,279 396,768 89,458 
 

Erbil 412,930 457,620 359,923 312,867 341,697 343,409 69,521 
 

Context_Encoder 

Circle 262,603 312,473 342,179 275,255 243,686 245,450 17,153 
 

Pattern 288,268 274,358 243,693 305,042 222,902 188,839 99,429 
 

Erbil 249,544 273,685 333,749 264,861 245,287 305,929 -56,385 
 

 
According to FID difference scores, in DCGAN training sessions, the pattern 
dataset is the best one. Circle training session becomes the worst one, 
moreover, after 1000 epoch, circle training FID scores increased. In context-
encoder training, after 1000 epoch Erbil training session FID score increased. 
So the worst one is Erbil dataset training in context encoder. The second 
unsuccessful one is the circle training session, while the best training session 
is the pattern dataset training.   

5 Results 

Heuristic evaluation and FID scores say that regardless of DCGAN or context-
encoder algorithm, the pattern dataset training gets the highest evaluation 
scores. But the lowest evaluation scores change accordingly to the algorithm 
type.  

Effects of colors: In DCGAN training, color complexity affected color 
generation. It is obvious that if the color complexity is one, the algorithm can 
be successful in generating colors. If the color complexity is two or more than 
two per image or the entire dataset it may affect the color generation 
negatively in DCGAN. In context-encoder, color complexity for the entire 
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dataset is not that much important, as the algorithm is focusing on the context 
of the single image. So context-encoder is better than DCGAN in generating 
colors regardless of the color complexities. We can understand that algorithm 
has an important role in generating colors, secondly, the color complexity is 
affecting the outputs too. But it is not obvious how the color complexity per 
image or entire dataset or both of them affect the algorithms. 

Effects of shapes: GLCM entropy shows the textural complexity levels. As 
textural complexity includes a spatial feature (co-occurrence of pixel values) it 
has information about shapes too. In shape generation, according to heuristic 
and FID score evaluation, the pattern dataset gets the highest scores in 
DCGAN and context-encoder sessions, even the pattern dataset has the 
second biggest GLCM entropy value. GLCM entropy results show that there is 
no direct relationship between the numeric GLCM entropy values with the 
algorithm outputs, instead, the distribution of the GLCM entropy values affects 
the training. GLCM distribution of the pattern dataset has a continuous path 
one after another that creates a regularity in change. In training sessions, if 
there is a regular change in the dataset, the algorithm training session 
became successful.  

6 Conslusion 

Results shows that  the color and shapes complexities are critical for 
selecting the dataset for GAN training sessions. Color complexity has 
negative correlation between DCGAN outputs success but the correlation is 
weak in context encoder. For the shape complexity among DCGAN and 
context-encoder training sessions, rather than the numeric shape complexity 
values for each image, the regularity of the shapes in the entire dataset is 
affecting the generative algorithm. 

This findings opens up valuable questions in terms of architectural dataset 
creation. What kind of color complexities do we have in architectural 
datasets? What is regularity in architecture? What is a regular architectural 
dataset? Is it possible to create a regular dataset of architecture? Is this 
regularity a trap for creating the same typological outputs for architecture with 
GAN algorithms? With the lead of all these results and questions, we can say 
the problem of complexity in architectural dataset is a potential and important 
research area for GAN algorithms in architecture. 
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