

Constrained Multi-Criteria Optimization for
Integrated Design in Professional Practice

Claire Duclos1, François Guéna1, Mariano Efron2

1 MAP-MAAC, Ecole Nationale Supérieure d’Architecture de Paris La Villette, France
c.duclos.prevet@gmail.com
francois.guena@email.com

2 Architecture-Studio, France
lm.efron@architecturestudio.fr

Abstract. To design sustainable architecture, theory encourages architects to rely on
automated exploration processes. In practice, the problems encountered are often
multicriteria and under constraint. This paper compares different constraint handling
strategies, approachable to designer, for processes involving evolutionary algorithms.
Four methods are tested on a case study from professional practice. Two methods rely
on parametric models: the penalty function method and the use of hyperparameters.
The others involve the use of generative techniques: a rule-based method and a repair
algorithm that takes the form of an agent-based model. This study highlights the
significant impact of the choice of the constraint management method on exploration
performance. Among other results, it appears that models involving the use of generative
techniques are more efficient than those using parametric models. This calls for the
development of dedicated tools.

Keywords: building envelope design, generative design, agent-based modeling,
constrained multiobjective evolutionary algorithm, daylighting simulation

1 Introduction

The global climate change emergency requires architects to deal with the
environmental issues earlier and earlier in the architectural design process.
Nowadays, visual programming facilitates interoperability and
multidisciplinarity, making environmental simulation and evolutionary
optimization approachable to architects.

These new tools have allowed the emergence of new computer-aided design
methods; namely, the exploration of architectural solutions where many
variants can be generated, evaluated, sorted, and finally selected. These
performances-based approaches, known as integrated design methods, have
been the subject of a significant research effort (see Shi, X et al., 2016 for a
comprehensive review).

29

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

mailto:author1@emaill.com
mailto:francois.guena@email.com
mailto:lm.efron@architecturestudio.fr

Figure 1. The 3 components of integrated design methods with optimization
algorithm. Source: Author, 2021.

Among these methods, a large part focused on building envelope design with

the aim of optimizing visual and thermal comfort (Eltaweel, Yuehong, 2017).
These methods are associated with different names in the scientific literature
but rely on the same approach. As illustrated in Figure 1, these methods require
3 components: a generative engine for shape modeling (often a parametric
model), an evaluation engine for environmental performance analysis, and an
engine for solution space exploration, (mostly evolutionary algorithms).

Despite their growing popularity in the scientific community, integrated
design methods remain largely unused in the practice of architectural offices
(Li, et al., 2020). Indeed, these theoretical approaches are usually not easy to
implement because problems encountered by practitioners are often both multi-
criteria and under constraints. This makes an already complex problem
formulation even more difficult (Zhao, S. and De Angelis, E., 2018). However,
a few papers report applications on professional projects (Haymaker J., et
al.,2018; Shen, X. et al., 2018), some showing that these methods allow
experimented architects to achieve design improvements (Bernal, M. et al.,
2020).

This gap between the state of the art and the observed practice have
motivated our research project, which follows an action research methodology
and tries to identify the technical obstacles that may explain this discrepancy.
Regarding the methods applied to envelopes, we have noticed that they can
involve large solution spaces and require the inclusion of constraints.
Therefore, the objective of our research is to identify and compare the

30

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

performances of different techniques allowing to deal with these constraints in
a multicriteria optimization problem observed.

2 Multi-criteria optimization under constraints

2.1 Constrained problems

In optimization, constraints are different from optimization criteria because they
are, by definition, inviolable. If the constraint is not satisfied, then the solution is
deemed infeasible, and evaluating its performance would be useless and time
consuming. Regarding envelope design problems, the constraints encountered
can be functional, aesthetical, or purely practical – such as collision issues in
solar shading systems for the later.

Moreover, envelope exploration can be conducted on two distinct scales: at
the module level (Fathy and Fareed, 2017; Jayathissa, P. et al., 2018,
Tabadkani, A. et al, 2019), or globally – the entire facade – (Yi, Y.K., 2019;
Erkan and Elias-Ozkan, 2016, Negendahl and Nielsen, 2015). Global scale
implementation involves many decision variables, which dramatically increase
the size of the solution space and, consequently, computation times. Regarding
visual and thermal comfort, working at the global scale appears to be
mandatory in three circumstances: (i) when the building form is complex, (ii)
when the building is placed in a heterogeneous urban context, making access
to the sun uneven, or (iii) when the architectural concept relies on complexity,
irregularity or random effects.

In order to reduce the size of the solution space, it is possible to perform a
sensitivity analysis to order the decision variables and reduce their number by
keeping only the most relevant (Kheiri, F., 2018). However, it is possible that
this method does not sufficiently reduce the solution space, and this is more
likely when the number of criteria to maximize increases and the purpose of
these criteria diverge. Therefore, it might be necessary, to reduce the solution
space, to add constraints that could be, for instance, aesthetical
(Chatzikonstantinou et al., 2019).

2.2 Constraint management methods with evolutionary algorithms, in
theory

Most algorithms used for exploration purposes in architecture are evolutionary
algorithms and most problems are multi-criteria (Li et al., 2020). According to
Coello, Carlos A. (2002) and Michalewicz, Z. and Schoenauer M. (1996), there
are different methods to handle constraints with evolutionary algorithms. These
methods can be classified into 5 categories:

(1) Penalty functions, which consist in degrading the score of the objective
function according to the degree of constraint violation. There are several types

31

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

of penalty, such as static penalty, when penalty factors do not evolve over
generations, or dynamic penalty when they do.

(2) Special representations and operators such as homomorphic maps, or
the decoder approach, designed for some particularly difficult problems.

(3) Repair algorithms, which consist in modifying – repairing – solutions that
do not respect the constraints to make them feasible. There are two types of
repair algorithms (Salcedo-Sanz, S., 2009): Lamarckian algorithm where the
modification of the solution leads to a modification of both the phenotype and
the genotype; and the Baldwinian algorithm that modifies only the phenotype.

(4) Methods that separate constraints and objective functions as Co-
evolution or behavioral Memory. A very accessible method consists in
transforming a constraint into an optimization function (Coello, C. A. 2017), so
the problem is no longer a constrained problem.

(5) Hybrid methods that mix evolutionary algorithms and other optimization
techniques as Nelder and Mead's simplex method or ant colony optimization.

Some of these techniques from the categories (1), (3) and (4) can be easily
implemented by the designer, others require computer programming skills
because they involve a partial modification of evolutionary algorithms, or are
techniques designed for specific problems.

2.3 Constraint-handling, in practice

In practice, designers who explore solution space are usually not computer
scientists. Some are visual programmers and use optimization solvers available
in their basic version. The most popular visual programming platform in the
architecture field (Grasshopper) has two multi-criteria optimization solvers
(Octopus and Wallacei). They do not handle constraints except for a filtering
system. This system allows to use a death penalty technique which consists in
deleting the non-feasible solutions and run until the desired number of
complying solutions is reached. This method is not recommended unless the
quantity of infeasible solutions is limited, otherwise the search may stagnate
(Coello, C. A. 2002).

Given these characteristics observed in practice, only three solutions,
identified in the literature on constraint management methods with evolutionary
algorithms, are accessible to designers: (i) static penalty functions, (ii)
transforming constraints into optimization criteria, and (iii) designing a
Baldwinian repair algorithm. The first two methods imply the evaluation of
unsatisfactory solutions, consequently they are not suitable when the simulation
computation time is long. The other methods presented in section 2.2 are not
included in our list of methods easily implementable by designers because they
would require a modification of the optimization solver, or the use of alternative
algorithms that are not currently implemented in the visual programming
platform.

Importantly, in numerous case studies originated from scientific literature on
integrated design methods it appears that other methods are used to reduce

32

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

the solution space only to solutions that comply with the constraints by adjusting
the parametric model. This can be achieved through intermediate parameters
– hyperparameters – which control several decision variables and thus reduce
their number (Chatzikonstantinou et al., 2019; Negendahl and Nielsen, 2015).
Instead of using a parametric model, there is also the possibility to develop
models, so-called generative models, capable of generating complexity from
simple rules using loops (Caetano et al., 2019), which rules can be akin to
constraints. In the relevant literature, different generative techniques are used
with integrated approaches such as cellular automata (Kim J., 2015), or agent-
based models (Gerber et al., 2017; Zarrabi et al., 2018).

While they are not always used to handle constraints, agent-based modeling
(Macal, 2016) allows, starting from an original solution, autonomous
architectural elements (agents) to interact until they reach a steady state, which
is a compromise where all agents achieve their goals. In this way, an agent-
based modeling can be used to transform an infeasible original solution into a
complying solution. It can thus operate as a repair function.

In order to eventually guide designers in the use of these techniques, we
sought to compare their effectiveness and manageability by testing them on an
envelope design case.

3 Case study

3.1 Context and objectives

Our case study is based on a real-world project designed by Architecture
Studio. It is a medical research institute. The objective was to optimize the solar
protection system of the laboratories in order to maximize indirect daylighting.
The system consists of large triangular vertical blades. The shapes of the
triangles vary to create a pattern in the facade.

A first study had been carried out in a professional context. To meet the
deadlines, we simplified the problem and used a basic method with a simple
parametric model and a genetic algorithm for single-criteria optimization (hours
of sunlight). Four decision variables were analyzed, one for the orientation of
the blades of each facade. Thus, the problem had neither constraints nor a
large solution space.

In a second step, with an academic perspective, we have reconsidered this
problem without reducing its complexity. Thus, it becomes a multi-criteria
problem under constraint, where the natural interior illuminance must be
maximized while the direct and diffuse solar radiation on the glazed parts must
be minimized. Also, the number of decision variables is much larger: each blade
can take a different orientation and the shape of the blade can also vary. Thus,
it becomes possible to use the reflected light radiation to maximize indirect
daylighting, as illustrated in Figure 2. The problem then contains feasibility

33

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

constraints to avoid collisions between the blades, and aesthetic constraints to
avoid jagged effects for the pattern in the facade.

3.2 Constraints-handling methods

In order to study and compare the different methods, we have experimented
several approaches to solve this constrained multi-criteria optimization
problem, which we have tested on a piece of facade reduced to 30 blades. The
"death penalty" method does not work on this problem since it has too many
infeasible solutions. Thus, we implement a first method (1) with 60 variables (2
per blade for 2.3E+55 solutions). It relies upon a penalty function to internalize
the collision constraints and introduces a third optimization criterion that
focuses on the smoothness of the curve drawn by the blades. The penalty
function evaluate the degree of constraint violation based on the collision area
between each blade. The advantage of this method is that it does not exclude
any solution except the infeasible ones. Moreover, this method is easy to
implement in visual programming since it is a simple parametric model. The
difficulty lies in the definition of the penalty coefficients (Coello, C. A. 2002). To
deal with this issue, it is necessary to evaluate a sample of the solution set
beforehand to calibrate the model.

A second method (2) consists in using hyperparameters that are the
coordinates of the control points of two NURBS curves (22 variables for 4.9E20
solutions). One curve is used to vary the orientation, and the other to modify
the shape of the blades. The advantage of this method is that it generates, by
construction, only aesthetically pleasing solutions and that the space of
solutions to be explored is greatly reduced. Also, this method is easy to
implement because it is a parametric model. However, the number of control
points of the curves is necessarily fixed, hence many satisfactory scenarios are
excluded from the exploration.

Figure 2. Perspective, plan and elevation of the solar shading system. Source:

Architecture Studio, 2015 and Author, 2019

34

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

Figure 3. Framework for the implementation of the constrained multi-criteria

optimization method with repair function. Source: Author, 2021

A third method (3) consist in modifying the parametric model to exclude

unsatisfactory solutions using a rule-based generative process. Our algorithm
generates blades one after the other in a way that respects the collision and
curvature constraints with 60 variables for 2.1E+37. The number of decision
variables remains unchanged but the number of values that each of them can
take has been greatly reduced. This method allows to generate aesthetically
satisfying solutions with curves having a variable number of control points. The
disadvantage of this particular algorithm is that it contains a stochastic
dimension to ensure that the curve is continuous. This generates a discrepancy
between genotype and phenotype. That can disturb the search of the genetic
algorithm. Also, this technique requires the use of recursion and is not easily
accessible with visual programming.

Finally, a fourth method (4), depicted in Figure 3, is to use the simple
parametric model of method (1) with the same solution space and add a repair
function that acts as an agent-based model. In this model, the blades are the
agents and have two attributes: their shape and orientation. The behavior of
each agent varies at each iteration depending on these two closest neighbors
to avoid collisions and jagged effects. At each iteration, the blades evolve until
the system finds an equilibrium where these two constraints are satisfied. It is
thus a system of self-organization of the blades. The advantage of this method
is to be able to generate only aesthetically satisfying solutions without overly
restricting the field of possibilities and without the need to use a random
function. The disadvantage is that it requires some programming knowledge to
implement this type of model. Also, the relevant algorithm that will allow to
respect the constraints without distorting too much the initial solution is hard to
find.

35

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

Figure 4. Graph with all the solutions evaluated for the 4 methods. Source: Author,

2021

3.3 Study parameters

The four methods were implemented on Grasshopper®, with the visualization
being done on the Rhinoceros® modeler. The methods based on generative
models were coded in Python. The experiments were carried out with a south-
facing facade and with a weather file from the Paris Orly station
(https://www.ladybug.tools/epwmap/). The Ladybug® plugin (Roudsari, 2013)
was used for the evaluation of direct and diffuse radiation, and the Honeybee®
plugin coupled with the Radiance lighting simulation software for the evaluation
of useful illuminance. The total radiation value is the target to minimize. For the
lighting simulation, the reflection parameters of the materials used are standard,
they correspond to the HQE recommendations. The sum of the values of the
useful illuminance with a 0.5 m grid is the objective to be maximized. The solver
used for the optimization is Wallacei® with the evolutionary multi-objective
algorithm (Deb, 2011) named NSGA-2 (Non dominated Sorting Genetic
Algorithm II). The calculations are run on 14 generations of 25 individuals each.
Once the simulations were completed, the results were assembled in an Excel®
file using the Colibri® plugin and then analyzed with Excel® and the online
visualization tool Design Explorer2®.

4 Results

The method (1) is the one that obtains the worst results in terms of performance
with only 7 non-dominated solutions. The values for the total radiation oscillate
between 19799.98 and 24299.93 kW/h, while the mean useful illuminance
varies between 62.30% and 65.28%. Moreover, the 3rd optimization criterion

36

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

used to minimize the sawtooth effect on the façade is not met and the solutions
are also less satisfactory from an aesthetic point of view.

Method (2) performs much better than (1), but less than (3) or (4). It has 21
non-dominated solutions and the scores vary between 15833.83 and 23771.28
kW/h for radiation, and between 59.42% and 65.00% for illuminance. They are
also more satisfactory from an aesthetic perspective despite the emergence of
discontinuity on the curve visible in Figure 5.

Figure 5. Extract of the solutions on the Pareto front for each method. Source:

Author, 2021

37

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

Method (3) is the best performing of the 4 with only 13 non-dominated
solutions. The values range from 14391.02 to 24720.07 kW/h, and from 59.34%
to 66.00%, but the patterns generated in the facade tend to be monotonic.

Finally, method (4) performs slightly worse than (3), but is still much better
than (1) and (2). It has 14 non-dominated solutions and values ranging from
12934.63 to 24608.58 kW/h for radiation, and between 55.92% to 65.86% for
useful illuminance. Moreover, the solutions do not present any particular
aesthetic problem.

5 Discussions

In practice, integrated methods based on the exploration of solution space often
require the introduction of constraints, either because the project impose some
constraints or because these constraints are necessary to reduce the size of
the solution space. For the same problem, there are different ways to generate
the geometry, which can have a strong impact on the exploration results. While
the choice of optimization algorithm (Waibel et al., 2019) and the choice of
evaluation method have already been studied (Carlucci, et al., 2015), little work,
to our knowledge, focused on the impact of the choice of generative method.

We have identified 5 techniques available to designers to incorporate
constraints into an optimization problem: formulate the constraints as a
criterion, use a penalty function, a repair function, hyperparameters, or a
generative technique. In our case study, the effectiveness of these methods
diverges. The methods involving generative techniques (3 and 4) give much
better solutions, but they are more complex to implement than the methods
using parametric models (1 and 2). Thus, it appears necessary to develop
dedicated tools allowing to democratize the use of generative techniques, in
particular for the implementation of repair functions with a specific optimization
solver allowing to use Lamarckian algorithms considered to be more efficient.

This study concerns a single scenario, the results could be quite different
with other design problems. Indeed, it seems that the relevance of a method
depends on the problem, and especially on the size of the feasible region.
Indeed, death penalties are useful if a minority of the solutions in the space is
infeasible. Penalty functions do not work well if a majority of solutions are
infeasible (Coello, C. A. 2002). Also, it is not always easy or possible to define
hyperparameters that makes it possible to get rid of the constraints; similarly, it
is not always possible to create a rule-based generative model that includes
decision variables or to find a repair function that works within the time
constraints of professional practice. In sum, it would be interesting to
experiment these methods on other design problems from practice in order to
propose guidelines to designers that would orient their choice of generative
method according to the type of problem encountered.

38

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

References

Bernal, M., Okhoya, V., Marshall, T., Chen, C., & Haymaker, J. (2020). Integrating

expertise and parametric analysis for a data-driven decision-making practice.
International Journal of Architectural Computing, 18(4), 424-440.

Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture:
Defining parametric, generative, and algorithmic design. Frontiers of Architectural
Research, 9(2), 287-300.

Carlucci, S., Causone, F., De Rosa, F., & Pagliano, L. (2015). A review of indices for
assessing visual comfort with a view to their use in optimization processes to
support building integrated design. Renewable and sustainable energy reviews, 47,
1016-1033.

Chatzikonstantinou, I., Turrin, M., Cubukcuoglu, C., Kirimtat, A., & Sariyildiz, S. (2019).
A Comprehensive Optimization Approach for Modular Facades: The Case of
PULSE Sunshading. International Journal of Design Sciences & Technology, 23(2),
159-185.

Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Computer methods in
applied mechanics and engineering, 191(11-12), 1245-1287.

Coello, C. A. C. (2017, July). Constraint-handling techniques used with evolutionary
algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (pp. 675-701).

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary
computation, 6(2), 182-197.

Eltaweel, A., & Yuehong, S. U. (2017). Parametric design and daylighting: A literature
review. Renewable and Sustainable Energy Reviews, 73, 1086-1103.

Ercan, B., & Elias-Ozkan, S. T. (2015). Performance-based parametric design
explorations: A method for generating appropriate building components. Design
Studies, 38, 33-53.

Fathy, F., & Fareed, H. A. (2017). Performance-driven Façade Design Using an
Evolutionary Multi-Objective Optimization Approach. In International Conference for
Sustainable Design of the Built Environment-SDBE London (p. 217).

Gerber, D. J., Pantazis, E., & Wang, A. (2017). A multi-agent approach for performance
based architecture: design exploring geometry, user, and environmental agencies
in façades. Automation in construction, 76, 45-58.

Haymaker, J., Bernal, M., Marshall, M. T., Okhoya, V., Szilasi, A., Rezaee, R., ... &
Welle, B. (2018). Design space construction: a framework to support collaborative,
parametric decision making. Journal of Information Technology in Construction
(ITcon), 23(8), 157-178..

Jayathissa, P., Caranovic, S., Hofer, J., Nagy, Z., & Schlueter, A. (2018). Performative
design environment for kinetic photovoltaic architecture. Automation in
Construction, 93, 339-347.

39

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

Kheiri, F. (2018). A review on optimization methods applied in energy-efficient building
geometry and envelope design. Renewable and Sustainable Energy Reviews, 92,
897-920.

Kim, J. (2015). Adaptive façade design for the daylighting performance in an office
building: the investigation of an opening design strategy with cellular automata.
International Journal of Low-Carbon Technologies, 10(3), 313-320.

Li, S., Liu, L., & Peng, C. (2020). A review of performance-oriented architectural design
and optimization in the context of sustainability: dividends and challenges.
Sustainability, 12(4), 1427.

Macal, C. M. (2016). Everything you need to know about agent-based modelling and
simulation. Journal of Simulation, 10(2), 144-156.

Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary computation, 4(1), 1-32.

Negendahl, K., & Nielsen, T. R. (2015). Building energy optimization in the early design
stages: A simplified method. Energy and Buildings, 105, 88-99.

Roudsari, M. S., Pak, M., & Smith, A. (2013, August). Ladybug: a parametric
environmental plugin for grasshopper to help designers create an environmentally-
conscious design. In Proceedings of the 13th international IBPSA conference held
in Lyon, France Aug (pp. 3128-3135).

Salcedo-Sanz, S. (2009). A survey of repair methods used as constraint handling
techniques in evolutionary algorithms. Computer science review, 3(3), 175-192.

Shen, X., Singhvi, A., Mengual, A., Spastri, M., & Watson, V. (2018). EVALUATING THE
MULTI-OBJECTIVE OPTIMIZATION METHODOLOGY FOR PERFORMANCE-
BASED BUILDING DESIGN IN PROFESSIONAL PRACTICE. ASHRAE and
IBPSA, 646-653.

Shi, X., Tian, Z., Chen, W., Si, B., & Jin, X. (2016). A review on building energy efficient
design optimization rom the perspective of architects. Renewable and Sustainable
Energy Reviews, 65, 872-884.

Tabadkani, A., Shoubi, M. V., Soflaei, F., & Banihashemi, S. (2019). Integrated
parametric design of adaptive facades for user's visual comfort. Automation in
Construction, 106, 102857.

Waibel, C., Wortmann, T., Evins, R., & Carmeliet, J. (2019). Building energy
optimization: An extensive benchmark of global search algorithms. Energy and
Buildings, 187, 218-240.

Yi, Y. K. (2019). Building facade multi-objective optimization for daylight and aesthetical
perception. Building and Environment, 156, 178-190.

Zarrabi, A. H., Azarbayjani, M., & Tavakoli, M. Generative Design Tool: Integrated
Approach toward Development of Piezoelectric Façade System.

Zhao, S., & De Angelis, E. (2018). Performance-based generative architecture design:
A review on design problem formulation and software utilization. Journal of
Integrated Design and Process Science, 22(3), 55-76.

40

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference

