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Abstract. To design sustainable architecture, theory encourages architects to rely on 
automated exploration processes. In practice, the problems encountered are often 
multicriteria and under constraint. This paper compares different constraint handling 
strategies, approachable to designer, for processes involving evolutionary algorithms. 
Four methods are tested on a case study from professional practice.  Two methods rely 
on parametric models: the penalty function method and the use of hyperparameters. 
The others involve the use of generative techniques: a rule-based method and a repair 
algorithm that takes the form of an agent-based model. This study highlights the 
significant impact of the choice of the constraint management method on exploration 
performance. Among other results, it appears that models involving the use of generative 
techniques are more efficient than those using parametric models. This calls for the 
development of dedicated tools. 

Keywords: building envelope design, generative design, agent-based modeling, 
constrained multiobjective evolutionary algorithm, daylighting simulation 

1 Introduction 

The global climate change emergency requires architects to deal with the 
environmental issues earlier and earlier in the architectural design process. 
Nowadays, visual programming facilitates interoperability and 
multidisciplinarity, making environmental simulation and evolutionary 
optimization approachable to architects.  

These new tools have allowed the emergence of new computer-aided design 
methods; namely, the exploration of architectural solutions where many 
variants can be generated, evaluated, sorted, and finally selected. These 
performances-based approaches, known as integrated design methods, have 
been the subject of a significant research effort (see Shi, X et al., 2016 for a 
comprehensive review).  
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Figure 1. The 3 components of integrated design methods with optimization 
algorithm. Source: Author, 2021. 

 
Among these methods, a large part focused on building envelope design with 

the aim of optimizing visual and thermal comfort (Eltaweel, Yuehong, 2017). 
These methods are associated with different names in the scientific literature 
but rely on the same approach. As illustrated in Figure 1, these methods require 
3 components: a generative engine for shape modeling (often a parametric 
model), an evaluation engine for environmental performance analysis, and an 
engine for solution space exploration, (mostly evolutionary algorithms). 

Despite their growing popularity in the scientific community, integrated 
design methods remain largely unused in the practice of architectural offices 
(Li, et al., 2020). Indeed, these theoretical approaches are usually not easy to 
implement because problems encountered by practitioners are often both multi-
criteria and under constraints. This makes an already complex problem 
formulation even more difficult (Zhao, S. and De Angelis, E., 2018). However, 
a few papers report applications on professional projects (Haymaker J., et 
al.,2018; Shen, X. et al., 2018), some showing that these methods allow 
experimented architects to achieve design improvements (Bernal, M. et al., 
2020).  

This gap between the state of the art and the observed practice have 
motivated our research project, which follows an action research methodology 
and tries to identify the technical obstacles that may explain this discrepancy. 
Regarding the methods applied to envelopes, we have noticed that they can 
involve large solution spaces and require the inclusion of constraints. 
Therefore, the objective of our research is to identify and compare the 
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performances of different techniques allowing to deal with these constraints in 
a multicriteria optimization problem observed. 

2 Multi-criteria optimization under constraints 

2.1 Constrained problems 

In optimization, constraints are different from optimization criteria because they 
are, by definition, inviolable. If the constraint is not satisfied, then the solution is 
deemed infeasible, and evaluating its performance would be useless and time 
consuming. Regarding envelope design problems, the constraints encountered 
can be functional, aesthetical, or purely practical – such as collision issues in 
solar shading systems for the later.  

Moreover, envelope exploration can be conducted on two distinct scales: at 
the module level (Fathy and Fareed, 2017; Jayathissa, P. et al., 2018, 
Tabadkani, A. et al, 2019), or globally – the entire facade – (Yi, Y.K., 2019; 
Erkan and Elias-Ozkan, 2016, Negendahl and Nielsen, 2015).  Global scale 
implementation involves many decision variables, which dramatically increase 
the size of the solution space and, consequently, computation times. Regarding 
visual and thermal comfort, working at the global scale appears to be 
mandatory in three circumstances: (i) when the building form is complex, (ii) 
when the building is placed in a heterogeneous urban context, making access 
to the sun uneven, or (iii) when the architectural concept relies on complexity, 
irregularity or random effects. 

In order to reduce the size of the solution space, it is possible to perform a 
sensitivity analysis to order the decision variables and reduce their number by 
keeping only the most relevant (Kheiri, F., 2018). However, it is possible that 
this method does not sufficiently reduce the solution space, and this is more 
likely when the number of criteria to maximize increases and the purpose of 
these criteria diverge. Therefore, it might be necessary, to reduce the solution 
space, to add constraints that could be, for instance, aesthetical 
(Chatzikonstantinou et al., 2019). 

2.2 Constraint management methods with evolutionary algorithms, in 
theory 

Most algorithms used for exploration purposes in architecture are evolutionary 
algorithms and most problems are multi-criteria (Li et al., 2020). According to 
Coello, Carlos A. (2002) and Michalewicz, Z. and Schoenauer M. (1996), there 
are different methods to handle constraints with evolutionary algorithms. These 
methods can be classified into 5 categories: 

(1) Penalty functions, which consist in degrading the score of the objective 
function according to the degree of constraint violation. There are several types 
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of penalty, such as static penalty, when penalty factors do not evolve over 
generations, or dynamic penalty when they do. 

(2) Special representations and operators such as homomorphic maps, or 
the decoder approach, designed for some particularly difficult problems.  

(3) Repair algorithms, which consist in modifying – repairing – solutions that 
do not respect the constraints to make them feasible. There are two types of 
repair algorithms (Salcedo-Sanz, S., 2009): Lamarckian algorithm where the 
modification of the solution leads to a modification of both the phenotype and 
the genotype; and the Baldwinian algorithm that modifies only the phenotype. 

(4) Methods that separate constraints and objective functions as Co-
evolution or behavioral Memory. A very accessible method consists in 
transforming a constraint into an optimization function (Coello, C. A. 2017), so 
the problem is no longer a constrained problem. 

(5) Hybrid methods that mix evolutionary algorithms and other optimization 
techniques as Nelder and Mead's simplex method or ant colony optimization.  

Some of these techniques from the categories (1), (3) and (4) can be easily 
implemented by the designer, others require computer programming skills 
because they involve a partial modification of evolutionary algorithms, or are 
techniques designed for specific problems. 

2.3 Constraint-handling, in practice 

In practice, designers who explore solution space are usually not computer 
scientists. Some are visual programmers and use optimization solvers available 
in their basic version. The most popular visual programming platform in the 
architecture field (Grasshopper) has two multi-criteria optimization solvers 
(Octopus and Wallacei). They do not handle constraints except for a filtering 
system. This system allows to use a death penalty technique which consists in 
deleting the non-feasible solutions and run until the desired number of  
complying solutions is reached. This method is not recommended unless the 
quantity of infeasible solutions is limited, otherwise the search may stagnate 
(Coello, C. A. 2002).  

Given these characteristics observed in practice, only three solutions, 
identified in the literature on constraint management methods with evolutionary 
algorithms, are accessible to designers: (i) static penalty functions, (ii) 
transforming constraints into optimization criteria, and (iii) designing a 
Baldwinian repair algorithm. The first two methods imply the evaluation of 
unsatisfactory solutions, consequently they are not suitable when the simulation 
computation time is long. The other methods presented in section 2.2 are not 
included in our list of methods easily implementable by designers because they 
would require a modification of the optimization solver, or the use of alternative 
algorithms that are not currently implemented in the visual programming 
platform.  

Importantly, in numerous case studies originated from scientific literature on 
integrated design methods it appears that other methods are used to reduce 
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the solution space only to solutions that comply with the constraints by adjusting 
the parametric model. This can be achieved through intermediate parameters 
– hyperparameters –  which control several decision variables and thus reduce 
their number (Chatzikonstantinou et al., 2019; Negendahl and Nielsen, 2015). 
Instead of using a parametric model, there is also the possibility to develop 
models, so-called generative models, capable of generating complexity from 
simple rules using loops (Caetano et al., 2019), which rules can be akin to 
constraints. In the relevant literature, different generative techniques are used 
with integrated approaches such as cellular automata (Kim J., 2015), or agent-
based models (Gerber et al., 2017; Zarrabi et al., 2018).  

While they are not always used to handle constraints, agent-based modeling 
(Macal, 2016) allows, starting from an original solution, autonomous 
architectural elements (agents) to interact until they reach a steady state, which 
is a compromise where all agents achieve their goals. In this way, an agent-
based modeling can be used to transform an infeasible original solution into a 
complying solution. It can thus operate as a repair function. 

In order to eventually guide designers in the use of these techniques, we 
sought to compare their effectiveness and manageability by testing them on an 
envelope design case. 

3 Case study 

3.1 Context and objectives 

Our case study is based on a real-world project designed by Architecture 
Studio. It is a medical research institute. The objective was to optimize the solar 
protection system of the laboratories in order to maximize indirect daylighting. 
The system consists of large triangular vertical blades. The shapes of the 
triangles vary to create a pattern in the facade.  

A first study had been carried out in a professional context. To meet the 
deadlines, we simplified the problem and used a basic method with a simple 
parametric model and a genetic algorithm for single-criteria optimization (hours 
of sunlight). Four decision variables were analyzed, one for the orientation of 
the blades of each facade. Thus, the problem had neither constraints nor a 
large solution space.  

In a second step, with an academic perspective, we have reconsidered this 
problem without reducing its complexity. Thus, it becomes a multi-criteria 
problem under constraint, where the natural interior illuminance must be 
maximized while the direct and diffuse solar radiation on the glazed parts must 
be minimized. Also, the number of decision variables is much larger: each blade 
can take a different orientation and the shape of the blade can also vary. Thus, 
it becomes possible to use the reflected light radiation to maximize indirect 
daylighting, as illustrated in Figure 2. The problem then contains feasibility 
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constraints to avoid collisions between the blades, and aesthetic constraints to 
avoid jagged effects for the pattern in the facade. 

3.2 Constraints-handling methods 

In order to study and compare the different methods, we have experimented 
several approaches to solve this constrained multi-criteria optimization 
problem, which we have tested on a piece of facade reduced to 30 blades. The 
"death penalty" method does not work on this problem since it has too many 
infeasible solutions. Thus, we implement a first method (1) with 60 variables (2 
per blade for 2.3E+55 solutions). It relies upon a penalty function to internalize 
the collision constraints and introduces a third optimization criterion that 
focuses on the smoothness of the curve drawn by the blades. The penalty 
function evaluate the degree of constraint violation based on the collision area 
between each blade. The advantage of this method is that it does not exclude 
any solution except the infeasible ones. Moreover, this method is easy to 
implement in visual programming since it is a simple parametric model. The 
difficulty lies in the definition of the penalty coefficients (Coello, C. A. 2002). To 
deal with this issue, it is necessary to evaluate a sample of the solution set 
beforehand to calibrate the model. 

A second method (2) consists in using hyperparameters that are the 
coordinates of the control points of two NURBS curves (22 variables for 4.9E20 
solutions). One curve is used to vary the orientation, and the other to modify 
the shape of the blades. The advantage of this method is that it generates, by 
construction, only aesthetically pleasing solutions and that the space of 
solutions to be explored is greatly reduced.  Also, this method is easy to 
implement because it is a parametric model. However, the number of control 
points of the curves is necessarily fixed, hence many satisfactory scenarios are 
excluded from the exploration.  

 
Figure 2. Perspective, plan and elevation of the solar shading system. Source: 

Architecture Studio, 2015 and Author, 2019 
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Figure 3. Framework for the implementation of the constrained multi-criteria 

optimization method with repair function. Source: Author, 2021 
 
A third method (3) consist in modifying the parametric model to exclude 

unsatisfactory solutions using a rule-based generative process. Our algorithm 
generates blades one after the other in a way that respects the collision and  
curvature constraints with 60 variables for 2.1E+37. The number of decision 
variables remains unchanged but the number of values that each of them can 
take has been greatly reduced.  This method allows to generate aesthetically 
satisfying solutions with curves having a variable number of control points. The 
disadvantage of this particular algorithm is that it contains a stochastic 
dimension to ensure that the curve is continuous. This generates a discrepancy 
between genotype and phenotype. That can disturb the search of the genetic 
algorithm. Also, this technique requires the use of recursion and is not easily 
accessible with visual programming.  

Finally, a fourth method (4), depicted in Figure 3, is to use the simple 
parametric model of method (1) with the same solution space and add a repair 
function that acts as an agent-based model. In this model, the blades are the 
agents and have two attributes: their shape and orientation. The behavior of 
each agent varies at each iteration depending on these two closest neighbors 
to avoid collisions and jagged effects. At each iteration, the blades evolve until 
the system finds an equilibrium where these two constraints are satisfied. It is 
thus a system of self-organization of the blades. The advantage of this method 
is to be able to generate only aesthetically satisfying solutions without overly 
restricting the field of possibilities and without the need to use a random 
function. The disadvantage is that it requires some programming knowledge to 
implement this type of model. Also, the relevant algorithm that will allow to 
respect the constraints without distorting too much the initial solution is hard to 
find. 
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Figure 4. Graph with all the solutions evaluated for the 4 methods. Source: Author, 

2021 

3.3 Study parameters 

The four methods were implemented on Grasshopper®, with the visualization 
being done on the Rhinoceros® modeler. The methods based on generative 
models were coded in Python. The experiments were carried out with a south-
facing facade and with a weather file from the Paris Orly station 
(https://www.ladybug.tools/epwmap/). The Ladybug® plugin (Roudsari, 2013) 
was used for the evaluation of direct and diffuse radiation, and the Honeybee® 
plugin coupled with the Radiance lighting simulation software for the evaluation 
of useful illuminance. The total radiation value is the target to minimize. For the 
lighting simulation, the reflection parameters of the materials used are standard, 
they correspond to the HQE recommendations. The sum of the values of the 
useful illuminance with a 0.5 m grid is the objective to be maximized. The solver 
used for the optimization is Wallacei® with the evolutionary multi-objective 
algorithm (Deb, 2011) named NSGA-2 (Non dominated Sorting Genetic 
Algorithm II). The calculations are run on 14 generations of 25 individuals each. 
Once the simulations were completed, the results were assembled in an Excel® 
file using the Colibri® plugin and then analyzed with Excel® and the online 
visualization tool Design Explorer2®. 

4 Results 

The method (1) is the one that obtains the worst results in terms of performance 
with only 7 non-dominated solutions. The values for the total radiation oscillate 
between 19799.98 and 24299.93 kW/h, while the mean useful illuminance 
varies between 62.30% and 65.28%. Moreover, the 3rd optimization criterion 

36

SIGraDi 2021 | Designing Possibilities | Ubiquitous Conference



 

used to minimize the sawtooth effect on the façade is not met and the solutions 
are also less satisfactory from an aesthetic point of view. 

Method (2) performs much better than (1), but less than (3) or (4). It has 21 
non-dominated solutions and the scores vary between 15833.83 and 23771.28 
kW/h for radiation, and between 59.42% and 65.00% for illuminance. They are 
also more satisfactory from an aesthetic perspective despite the emergence of 
discontinuity on the curve visible in Figure 5.  

 

 
Figure 5.  Extract of the solutions on the Pareto front for each method. Source: 

Author, 2021 
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Method (3) is the best performing of the 4 with only 13 non-dominated 
solutions. The values range from 14391.02 to 24720.07 kW/h, and from 59.34% 
to 66.00%, but the patterns generated in the facade tend to be monotonic. 

Finally, method (4) performs slightly worse than (3), but is still much better 
than (1) and (2). It has 14 non-dominated solutions and values ranging from 
12934.63 to 24608.58 kW/h for radiation, and between 55.92% to 65.86% for 
useful illuminance. Moreover, the solutions do not present any particular 
aesthetic problem. 

5 Discussions 

In practice, integrated methods based on the exploration of solution space often 
require the introduction of constraints, either because the project impose some 
constraints or because these constraints are necessary to reduce the size of 
the solution space. For the same problem, there are different ways to generate 
the geometry, which can have a strong impact on the exploration results. While 
the choice of optimization algorithm (Waibel et al., 2019) and the choice of 
evaluation method have already been studied (Carlucci, et al., 2015), little work, 
to our knowledge, focused on the impact of the choice of generative method. 

We have identified 5 techniques available to designers to incorporate 
constraints into an optimization problem: formulate the constraints as a 
criterion, use a penalty function, a repair function, hyperparameters, or a 
generative technique.  In our case study, the effectiveness of these methods 
diverges. The methods involving generative techniques (3 and 4) give much 
better solutions, but they are more complex to implement than the methods 
using parametric models (1 and 2). Thus, it appears necessary to develop 
dedicated tools allowing to democratize the use of generative techniques, in 
particular for the implementation of repair functions with a specific optimization 
solver allowing to use Lamarckian algorithms considered to be more efficient. 

This study concerns a single scenario, the results could be quite different 
with other design problems. Indeed, it seems that the relevance of a method 
depends on the problem, and especially on the size of the feasible region. 
Indeed, death penalties are useful if a minority of the solutions in the space is 
infeasible. Penalty functions do not work well if a majority of solutions are 
infeasible (Coello, C. A. 2002). Also, it is not always easy or possible to define 
hyperparameters that makes it possible to get rid of the constraints; similarly, it 
is not always possible to create a rule-based generative model that includes 
decision variables or to find a repair function that works within the time 
constraints of professional practice. In sum, it would be interesting to 
experiment these methods on other design problems from practice in order to 
propose guidelines to designers that would orient their choice of generative 
method according to the type of problem encountered. 
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