

ÁREAS DEGRADADAS E CONTAMINADAS

SELEÇÃO DE MACRÓFITAS AQUÁTICAS COM POTENCIAL DE FITORREMEDIAÇÃO NO ARROIO SANTA BÁRBARA, MUNICÍPIO DE PELOTAS/RS.

Carolina Faccio Demarco - carol_demarco@hotmail.com Universidade Federal de Pelotas

Mateus Torres Nazari - nazari.eas@gmail.com Universidade Federal de Pelotas

Flávio Anastácio de Oliveira Camargo - fcamargo@ufrgs.br Universidade Federal do Rio Grande do Sul

Maurízio Silveira Quadro - mausq@hotmail.com Universidade Federal de Pelotas.

Simone Pieniz - nutrisimone@yahoo.com.br Universidade Federal de Pelotas.

Robson Andreazza - robsonandreazza@yahoo.com.br Universidade Federal de Pelotas.

Resumo: A utilização de plantas para degradar, extrair ou imobilizar contaminantes vem despertando interesse quando o assunto é recuperação de áreas degradadas e contaminadas. Essa técnica, quando comparada a métodos tradicionais, apresenta menores custos e maior aceitação por parte da comunidade em geral. Para tal aplicação, são necessários estudos aprofundados acerca de quais espécies são mais indicadas para a remediação de determinado contaminante. Assim, o objetivo deste trabalho é selecionar espécies com potencial de fitorremediação no arroio Santa Bárbara, município de Pelotas/RS para servirem de foco em estudos futuros. Foram encontradas seis espécies de macrófitas ocorrendo naturalmente nesta região, sendo elas *Enydra anagallis* Gardner, *Hydrocotyle ranunculoides* L.f, *Hymenachne grumosa (Nees)* Zuloaga, *Lemna valdiviana* Phil, *Pistia stratiotes* L. e *Sagittaria montevidensis* Cham. & Schltdl. Entre elas, merecem destaque a espécie Enydra anagallis *Gardner* com potencial fitoacumulador de chumbo, cromo e níquel, *Sagittaria montevidensis* Cham. & Schltdl com potencial para o cobre, *Pistia stratiotes* L para o manganês, *Hymenachne grumosa* (Nees) Zuloaga para o vanádio e *Hydrocotyle ranunculoides* L.f. para o zinco.

Palavras-chave: macrófitas aquáticas; fitorremediação; metais pesados; arroio Santa Bárbara.

1. INTRODUÇÃO E OBJETIVOS

A fitorremediação (*fito*: planta e *remediar*: corrigir) é uma tecnologia emergente que utiliza plantas para degradar, extrair, conter ou imobilizar contaminantes em solos e águas. Esta tecnologia tem sido considerada como uma alternativa inovadora e de baixo custo à maioria das técnicas de tratamento já estabelecidas para áreas contaminadas (USEPA, 2000). Neste cenário, as macrófitas aquáticas, particularmente as livres, submersas enraizadas e emergentes, apresentam destaque pela eficiência em remover uma grande variedade de poluentes (metais-traço, radionuclídeos e poluentes orgânicos e inorgânicos), ainda que este potencial de remoção varie de espécie para espécie (DHIR et al., 2009). A fitorremediação apresenta enorme aplicabilidade tal como tratamento de solos e lodos contaminados, efluentes industriais e domésticos, drenagem ácida de minas, percolado de aterros sanitários, escoamento superficial urbano, rural e industrial, cobertura vegetal para áreas contaminadas, construção de barreiras hidráulicas, remediação de águas subterrâneas, entre outros (BARRETO, 2011).

Segundo Pilon-Smits (2005), a fitorremediação pode ser empregada para o controle dos mais variados poluentes, tais como hidrocarbonetos de petróleo, compostos organoclorados, pesticidas e herbicidas, explosivos, metais-traço, radionuclídeos, nutrientes, patógenos, entre outros. O baixo custo de investimento e de operação, sua aplicabilidade in situ, e geração mínima de degradação e desestabilização da área a ser descontaminada são algumas das vantagens da fitorremediação (CHAVES et al., 2010). Também pode-se destacar como benefícios do uso dessa técnica: a contenção dos lixiviados, manutenção e melhoria da estrutura física, da fertilidade e da biodiversidade do solo, e absorção de metais do solo, cuja extração é dispendiosa quando se utiliza outra tecnologia (KHAN et al., 2000).

A efetividade da fitorremediação, quando utilizada para remoção de metais-traço, depende do grau de contaminação do metal no solo, da capacidade das plantas em acumularem esses elementos e da disponibilidade do metal no solo (CHAVES et al., 2010). Alguns outros fatores limitantes são o clima, o tipo de solo, a estação do ano, a concentração e profundidade do contaminante e a interferência do contaminante no crescimento da planta, o que muitas vezes leva a um crescimento lento, aumentando o tempo necessário para o processo de descontaminação (VASCONCELLOS et al., 2012). De acordo com Susarla et al. (2002) alguns dos fatores que afetam a captura e distribuição dos poluentes nas plantas são: propriedades químicas e físicas do composto (solubilidade em água, pressão de vapor, peso molecular, especiação química), características ambientais (temperatura, pH, teor de matéria orgânica, potencial REDOX, salinidade e umidade do solo) e características das plantas (espécie de planta, tipo de sistema radicular, tipos de enzimas envolvidos, mecanismos específicos e taxas de transpiração).

O objetivo deste trabalho é analisar a capacidade de bioacumulação de metais pesados pelas macrófitas aquáticas encontradas no arroio Santa Bárbara, município de Pelotas/RS, visando destacar diferenças entre as espécies e identificar aquelas com potencial para serem utilizadas em técnicas de fitorremediação. Mais especificamente, o escopo da pesquisa foi coletar e identificar as espécies e analisar a composição dos órgãos vegetais, sendo eles parte aérea e raiz, quanto à presença de metais pesados (Cr, Cu, Ni, Pb, Mn, V e Zn).

2. METODOLOGIA

2.1.Área de estudo

O arroio Santa Bárbara é um dos principais corpos hídricos do município de Pelotas, Estado do Rio Grande do Sul. Encontra-se numa área com altitude média de 7 metros em relação ao nível do mar e posição geográfica de 31°45'43" de latitude sul e 52°21'00" de longitude oeste, sendo o principal responsável pelo escoamento hídrico da sub-bacia hidrográfica do arroio Santa Bárbara (Figura 1), a qual aflui para o canal São Gonçalo e este até a lagoa dos Patos (SIMON, 2007).

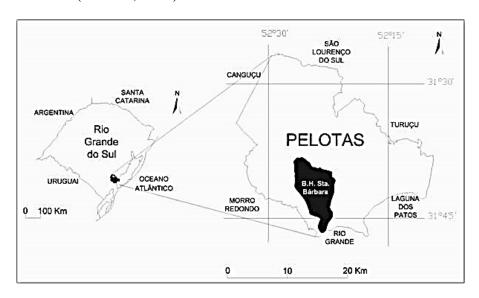


Figura 1. Localização do município de Pelotas e da bacia hidrográfica do arroio Santa Bárbara. Fonte: Simon, 2009.

2.2. Coleta e identificação das macrófitas aquáticas

A coleta das macrófitas foi realizada em 4 pontos distintos, sendo que 2 deles localizam-se no leito principal e os outros 2 localizam-se no canal paralelo ao arroio Santa Bárbara. Esta determinação da área de estudo teve como objetivo a melhor caracterização geral do ambiente em questão, considerando que o canal lateral deste arroio tem a função de receber o excedente das águas pluviais, além de descargas de esgoto doméstico e industrial das áreas circunvizinhas, os quais são transportados através de bombas até o leito principal. A amostragem ocorreu de maneira aleatória, coletando um indivíduo de cada espécie presente em cada local. A identificação das espécies coletadas foi realizada pelo Departamento de Botânica do Instituto de Biologia da Universidade Federal de Pelotas, através da análise de material fresco e de fotografias digitais.

2.3. Análise da concentração de metais pesados

Os indivíduos coletados foram lavados em água corrente e com água destilada, com o intuito de remover os sedimentos associados. As plantas foram então separadas por órgão vegetal (raízes e parte aérea) e colocados na estufa a 60°C por 48h. Após esse processo de secagem, as amostras foram trituradas individualmente com o auxílio do almofariz e pistilo. A

decomposição do tecido vegetal, visando a determinação dos metais pesados às plantas, foi realizada por digestão úmida utilizando ácido nítrico (HNO3) e perclórico (HClO4), onde o material é parcialmente oxidado com ácido nítrico, sendo o restante oxidado pelo ácido perclórico. Foram utilizadas 0,100g de amostra já secas e trituradas (pesadas em balança analítica digital) e 6ml de ácido nítrico, ficando em repouso por 10h. O material foi colocado no bloco digestor a 80°C (1h) e, logo após a 120°C (2h). Decorrido esse tempo, foi adicionado 1ml de ácido perclórico e a temperatura foi elevada a 180°C por 2h. Após o resfriamento dos tubos a aproximadamente 50°C, o conteúdo foi transferido para balões volumétricos e a água deionizada foi adicionada ao resíduo da digestão, perfazendo 25ml. Após o processo de digestão, as concentrações dos elementos foram determinadas com o uso do Espectrômetro de Emissão Indutiva de Plasma Acoplado (ICP- OES), marca Perkin Elmer, no Laboratório de Análises de Solos da UFRGS.

3. RESULTADOS E DISCUSSÕES

3.1. Espécies identificadas

A coleta permitiu a identificação de seis espécies totais de macrófitas aquáticas. Estas estão descritas na Tabela 1 pelo nome popular, família e espécie.

Tabela 1. Espécies de macrófitas aquáticas identificadas

Nome popular	Família	Espécie	Ocorrência na área de estudo	
			Leito principal	Canal paralelo
-	Asteraceae	Enydra anagallis Gardner	X	X
-	Araliaceae	Hydrocotyle ranunculoides L.f	X	X
Canavião	Poaceae	Hymenachne grumosa (Nees) Zuloaga	X	X
-	Araceae	Lemna valdiviana Phil		X
Alface- d'água	Araceae	Pistia stratiotes L.	X	X
Flecha,	Alismataceae	Sagittaria montevidensis Cham.		X
Sagitária		& Schltdl.		

Investigações em campo realizadas por Oliveira et al. (2011) no Litoral Norte do Estado do Rio Grande do Sul demonstraram a ocorrência natural de três espécies iguais às identificadas neste trabalho, sendo elas: *Hydrocotyle ranunculoides* L. *Pistia stratiotes* L e *Sagittaria montevidensis* Cham. & Schltdl. Trindade et al. (2010) ao caracterizar a comunidade de macrófitas aquáticas presentes no *campus* Carreiros da Universidade Federal de Rio Grande, também no Estado do Rio Grande do Sul, registrou a presença de cinco espécies iguais, dentre as quarenta e três que foram documentadas por ele. São elas: *Enydra anagallis* Gardner, *Hydrocotyle ranunculoides* L., *Lemna valdiviana* Phil, *Pistia stratiotes* L e

Sagittaria montevidensis Cham. & Schltdl. A espécie *Hydrocotyle ranunculoides* L. também teve ocorrência natural registrada no Estado do Rio Grande do Sul em duas outras localidades. A primeira é o Parque Nacional da Lagoa do Peixe, de acordo com Rolon et al. (2011). O segundo local é o distrito de Povo Novo, no município do Rio Grande, de acordo com Kafer et al. (2011).

3.2. Concentrações de metais pesados no tecido

Chumbo

Os limites de toxicidade do elemento chumbo variam na ordem de 30 a 300 mg/kg considerando massa seca. Já os valores usuais são encontrados no intervalo de 5 a 10 mg/kg também em base seca, de acordo com Kabata-Pendias e Pendias (2001). As espécies coletadas apresentaram valores entre 14,58 mg/kg (*Pistia stratiotes* L.) e 37,88 mg/kg (*Enydra anagallis* Gardner), estando então estes acima do valor usual, porém dentro dos limites de toxicidade. Apesar do elemento chumbo ter ocorrência natural em plantas, ele não é um elemento essencial ao metabolismo das mesmas pois ainda não existem funções biológicas conhecidas atribuídas a ele (KABATA-PENDIAS e PENDIAS, 2001). Um estudo aprofundado da absorção de chumbo pelas raízes das plantas, feito por Zimdahl (1976), concluiu que a absorção se dá de maneira passiva e o elemento é absorvido principalmente pelos pêlos radiculares e é armazenado até um grau considerável na parede celular. O elemento chumbo apresenta baixa mobilidade em vegetais pois tende a se ligar fortemente aos tecidos radiculares (KABATA-PENDIAS e PENDIAS, 2001). As concentrações deste elemento nas raízes foram mais elevadas que a parte aérea, para todas as espécies analisadas, confirmando então a baixa mobilidade.

Cromo

Os limites de toxicidade do elemento cromo variam na ordem de 5 a 30 mg/kg de massa seca. Já os valores usuais são encontrados variando de 0,1 a 0,5 mg/kg de massa seca, de acordo com Kabata-Pendias e Pendias (2001). Usualmente, segundo os mesmos autores, uma concentração mais elevada de cromo é observada nas raízes do que na parte aérea da planta, enquanto a menor concentração é encontrada nos grãos. A análise das concentrações de cromo nas espécies coletadas corrobora a afirmação de que os teores mais elevados são encontrados na raiz do vegetal. A espécie que apresentou a concentração de cromo mais elevada foi a *Enydra anagallis* Gardner (acima do limite de toxicidade) e a espécie com menor concentração foi a *Lemna valdiviana* Phil com valores totais de 50,68 mg/kg e 10,75 mg/kg respectivamente.

Cobre

Os limites de toxicidade do elemento cobre variam de 20 a 100 mg/kg de massa seca. Já os valores usuais são encontrados variando de 5 a 30 mg/kg de massa seca, de acordo com Kabata-Pendias e Pendias (2001). A espécie que apresentou concentração mais elevada foi *Sagittaria montevidensis* Cham. & Schltdl e a que apresentou menor concentração foi a *Lemna valdiviana* Phil, com valores de 482,18 mg/kg e 1,28 mg/kg, respectivamente. A espécie em destaque, *Sagittaria* sp., a qual apresentou a concentração mais elevada de cobre em toda a planta, apesar de ser uma macrófita amplamente conhecida e comumente utilizada em sistemas de fitorremediação por *wetlands construídos* (BHATIA e GOYAL, 2013) possui

uma lacuna de informações no que tange a análise de metais pesados em condições naturais. Este fato, aliado com o potencial encontrado para remoção de cobre nesta pesquisa, confirma a necessidade de estudos mais aprofundados acerca do assunto. A concentração de cobre foi mais elevada no sistema radicular do que na parte aérea da planta, para todas as espécies analisadas, confirmando estudos de Xia e Shen (2007) e Vendruscolo (2013).

Manganês

Para Kabata-Pendias e Pendias (2001), os limites de toxicidade do manganês situam-se no intervalo de 400 a 1000 mg/kg, enquanto os valores usuais variam de 30 a 300 mg/kg, ambos considerados em base seca. A espécie que apresentou a maior concentração do elemento foi a *Pistia stratiotes* L., com o valor total de 5216,71 mg/kg, sendo este bem superior ao limite de toxicidade utilizado como referência. Todas as outras espécies também apresentaram valores superiores ao limite de toxicidade utilizado como referência. As concentrações apresentaram-se elevadas para este elemento devido aos altos teores de manganês nos solos da região do município de Pelotas.

Níquel

Os limites de toxicidade do elemento níquel variam na ordem de 10 a 100 mg/kg de massa seca. Já os valores usuais são encontrados variando de 0,1 a 5 mg/kg também em base seca, de acordo com Kabata-Pendias e Pendias (2001). As concentrações obtidas nas espécies coletadas situam-se no intervalo de 5,80 mg/kg (espécie *Lemna valdiviana* Phil) a 24,92 mg/kg (espécie *Enydra anagallis* Gardner). A partir deste resultado, verifica-se que as macrófitas apresentaram concentrações dentro do limite de toxicidade para este elemento.

Vanádio

Os limites de toxicidade do elemento vanádio variam na ordem de 5 a 10 mg/kg de massa seca. Já os valores usuais são encontrados variando de 0,2 a 1,5 mg/kg também em base seca, de acordo com Kabata-Pendias e Pendias (2001). A espécie que apresentou a menor concentração foi a *Sagittaria montevidensis* Cham. & Schltdl (8,56 mg/kg), permanecendo acima do intervalo usual, porém dentro dos limites de toxicidade. Já a espécie que apresentou maior concentração de vanádio foi a *Hymenachne grumosa* (Nees) Zuloaga, amplamente conhecida como *Panicum grumosum* Nees, com um valor de 30,10 mg/kg em base seca, estando acima do limite de toxicidade.

Zinco

Os limites de toxicidade do elemento zinco variam na ordem de 100 a 400 mg/kg de massa seca. Já os valores usuais são encontrados variando de 27 a 150 mg/kg também em base seca, de acordo com Kabata-Pendias e Pendias (2001). As concentrações encontradas nas espécies coletadas variam de 189,37 mg/kg na espécie *Lemna valdiviana* Phil a 454,99 mg/kg na espécie *Hydrocotyle ranunculoides* L.f. Todas elas apresentaram, portanto, concentrações acima dos valores considerados usuais para Kabata-Pendias e Pendias (2001). Apenas a espécie com maior concentração encontra-se acima do limite de toxicidade.

Samecka-Cymerman e Kempers (2000) detectaram concentrações similares a este estudo, para o elemento zinco, variando de 0 a 500 mg/kg na análise de macrófitas ocorrendo naturalmente em um córrego poluído por resíduos de mineração de carvão.

4. CONSIDERAÇÕES FINAIS

As espécies encontradas nos ambientes aquáticos com maior potencial fitoacumulador foram a *Enydra anagallis* Gardner para chumbo, cromo e níquel, a *Sagittaria montevidensis* Cham. & Schltdl para o cobre, *Pistia stratiotes* L para o manganês, *Hymenachne grumosa* (Nees) Zuloaga para o vanádio, *Hydrocotyle ranunculoides* L.f. para o zinco. Estudos ainda estão sendo feitos para identificar o melhor potencial de fitorremediação de cada espécie para a formação dos biofiltros e aplicação no ambiente.

Agradecimentos

Ao CNPq pelo auxílio financeiro.

REFERÊNCIAS

BARRETO, A. B. A seleção de macrófitas aquáticas com potencial para remoção de metais-traço em fitorremediação. Belo Horizonte, 99 p., 2011. Dissertação (Mestrado) - Universidade Federal de Minas Gerais.

BATHIA, M.; GOYAL, D. Analyzing Remediation Potential of Wastewater Through Wetland Plants: A Review. **Environmental Progress & Sustainable Energy** v.28, n.3, p. 404–409, 2013.

CHAVES, L. H. G.; MESQUITA, E. F.; ARAUJO, D. L; FRANÇA, C. P. Acúmulo e Distribuição de Cobre e Zinco em Mamoneira Cultivar BRS Paraguaçu e Crescimento da Planta. **Engenharia Ambiental - Espírito Santo do Pinhal**, v. 7, n. 3, p. 263-277, 2010.

DHIR, B.; SHARMILA, P.; SARADHI, P. P. Potential of Aquatic Macrophytes for Removing Contaminants from the Environment. **Critical Reviews in Environmental Science and Technology**, v.39, n.9, p. 754–781, 2009.

KABATA-PENDIAS, A; PENDIAS, H. **Trace Elements in soils and plants**. Boca Raton: CRC Press, 2001. 331p.

KAFER, D. S; COLARES I. G.; HEFLER S., M.; (2011). Composição florística e fitossociologia de macrófitas aquáticas em um banhado continental em Rio Grande, RS, Brasil. **Rodriguésia** v.62, n.4, p. 835-846, 2011.

KHAN, A. G.; KUEK, C.; CHAUDHRY, T. M.; KHOO, C. S.; HAYES, W. J. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. **Chemosphere**, v. 41, p.197–207, 2000.

OLIVEIRA, L. S; KRÁS, E. M.; GONÇALVES, V. L. C. Levantamento de macrófitas fitorremediadoras situadas em canais de drenagem pluvial. Anais da II Mostra Integrada de Iniciação Científica, v.2, n. 2. – FACOS/CNEC.Osório, 2011

PILON-SMITS. Phytoremediation. **Annual Review of Plant Biology**, v. 56, n.1, p. 15–39, 2004.

ROLON, A. S.; ROCHA, O.; MALTCHIK, L. Diversidade de macrófitas aquáticas do Parque Nacional da Lagoa do Peixe. **Neotropical Biology and Conservation.** v. 6, n. 1, p. 5-12, 2011.

SAMECKA-CYMERMAN, A.; KEMPERS, A. J. Bioindication of Heavy Metals with Aquatic Macrophytes: the Case of a Stream Polluted with Power Plant Sewages in Poland. **Journal of Toxicology and Environmental Health.** v. 62, n. 1, p. 57–67, 2000.

SIMON, A. L. H.; GONÇALVES A. M. B. A.; HILSINGER R.; NOAL, R.E. Impactos Ambientais e Estado de Degradação Ambiental do Canal do Santa Bárbara, Município De Pelotas, RS. X Simpósio Brasileiro de Georafia Física Aplicada. 2007.

SIMON, A. L. H.; Elaboração de Cenários Recentes de Uso da Terra Utilizando Imagens do Google Earth. **Ar@cne. Revista electrónica de recursos en Internet sobre Geografía y Ciencias Sociales**. n. 116, 2009

SUSARLA, S., MEDINA, V. F., & MCCUTCHEON, S. C. Phytoremediation: An ecological solution to organic chemical contamination. **Ecological Engineering,** v. *18*, n. 5., p. 647–658, 2002.

TRINDADE, C. R. T.; PEREIRA, S. A.; ALBERTONI, E. F.; PALMA-SILVA, C. Caracterização e Importância das Macrófitas Aquáticas com Ênfase nos Ambientes Límnicos do Campus Carreiros - Furg, Rio Grande, Rs. **Cadernos de Ecologia Aquática,** v. 5, n.2, p. 1–22, 2010.

USEPA. U.S. Environmental Protection Agency. Introduction to Phytoremediation. Cincinnati: 2000. 72p.

VASCONCELLOS M. C.; PAGLIUSO, D.; SOTOMAIOR, V. S. Fitorremediação: Uma proposta de descontaminação do solo. **Estud. Biol., Ambiente Divers.** v. *34*, n.83, p. 261-267, 2012.

VENDRUSCOLO, D. Seleção de plantas para fitorremediação de solo contaminado com cobre. Santa Maria, 57p. 2013. Dissertação (Mestrado)- Universidade Federal de Santa Maria.

XIA, Y.; SHEN, Z. G. Comparative studies of copper tolerance and uptake by three plant species of the genus Elsholtzia. *Bulletin of Environmental Contamination and Toxicology*. v 79, n. 1, p. 53–57,2007.

ZIMDAHL, R. L. Entry and Movement in Vegetation of Lead Derived from Air and Soil Sources. **Journal of the Air Pollution Control Association**, *v.* 26, n.7, p. 655–660, 1976.