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Resumo: Neste trabalho, é apresentado a previsão da velocidade do vento a curto 
prazo na região tropical de Mucuri, Bahia, Brasil, aplicando algoritmo de aprendizado 
de máquina supervisionado por meio da Rede Neural Multilayer Perceptron, Rede 
Neural Recorrente e Decomposição Wavelet, isto para a série temporal horária 
representativa deste local. Para treinar a Rede Neural Artificial (RNA) e validar a 
técnica, dados anemométricos de um mês foram coletados por uma torre 
anemométrica com altura de 100 m. Diferentes famílias de Wavelets e diferentes 
configurações de RNA foram aplicadas para este local e altura. Com base nos 
resultados alcançados, pode-se concluir que o método proposto (RNN + Meyer 
Wavelets) apresentou os melhores resultados no horizonte de previsão de curto prazo, 
isto é, 12 h à frente.  
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SHORT-TERM WIND SPEED FORECASTING IN TROPICAL REGION 
USING WAVELETS AND ARTIFICIAL INTELLIGENCE 

 

Abstract: In this paper, the short-term wind speed forecasting in the tropical region of 
Mucuri, Bahia, Brazil, applying supervised machine learning algorithm by Multilayer 
Perceptron Neural Network, Recurrent Neural Network technique and Wavelet Packet 
Decomposition to the hourly time series representative of the site is presented. To train 
the Artificial Neural Network (ANN) and validate the technique, data for one month 
were collected by an anemometric tower at height of 100.0 m. Different Wavelet 
families and different ANN configurations were applied for this site and height. Based 
on the outcomes of the study cases and results, it can be concluded that the proposed 
method (RNN + Meyer Wavelets) performed the best results in short-term forecasting 
horizon (12 h ahead). 
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1. INTRODUCTION 

The reduction of emissions of greenhouse gases into the atmosphere has led 
many countries to increasingly seek the development of alternative sources of energy 
generation, including solar and wind energy, as well as the implementation of policies 
for sustainable energy sources [1]. In wind energy terms, it is known that the variability 
of wind direction and speed throughout the day makes it difficult to decide whether or 
not to drive wind turbines, because in practice, it is verified that the wind resource 
presents temporal variations in several orders of magnitude. The use of computational 
models can help both the identification of locations with high wind potential and, when 
used operationally in daily integrations, in the short-term energy generation forecast 
[2]. References [3], [4] and [5] showed results of mathematical modeling and numerical 
simulation for short-term wind speed predictions with computational intelligence 
techniques, especially using Multilayer Perceptron (MLP) and Recurrent Neural 
Networks (RNN) with Feedforward and Backpropagation training algorithm, all with 
good results achieved and low associated errors.  

According to the literature [6], the Empirical Wavelet Transform (EWT) can 
effectively identify and extract a finite number of intrinsic modes of a wind speed time 
series. The use of wind power generation is very challenging for current power system 
operations. One reason for this is that wind power is an intermittent energy, which has 
strong randomness and instability [7]. Another reason is that wind power is a non-
dispatchable energy source, which cannot be controlled by operators in the same way 
as other electric power sources [8]. These problems can effectively be resolved if wind 
speed can be predicted accurately [9]. Therefore, improving the accuracy of short-term 
wind speed forecasting and developing new studies on this, are crucial for the 
operation of wind power plants, as in [10], [11], [12] and [13]. Furthermore, it is possible 
to cite recent studies of short-term wind speed forecasting, for example: [14], [15] and 
[5]. In all studies, when increasing the forecast interval there is an increase in the 
associated error of the forecasting.  

In this context, this paper aimed to define the most efficient Wavelet Family, 
MLP and RNN configuration with Levenberg–Marquardt Backpropagation training 
algorithm, to predict the wind speed for 1 hour, and then infer the forecasting for 3, 6, 
9 and 12 hours ahead, using as reference observational data collected from a 
anemometric tower installed at 100.0 m, located in the tropical region of the Mucuri 
city, Bahia state, Brazil northeast, for the period between November 30, 2015 until 
December 31, 2015. The reason for choosing this period is due to be a dry season, 
where the water contribution for electric energy generation is compromised, being 
necessary the participation of alternative sources to complement the energy demand. 
This study is a novel investigation related to the operation of wind power plants for 
Mucuri. The main contributions of this study are provided as follows: a) The innovative 
aspect of this work is that it uses an approach to train the model for the next hour 
forecasting, then recursively inferring the forecasting for the following hours, in addition 
to applying this artificial intelligence method targeting short-range wind speed 
forecasting for this height in a tropical region. b) No previous studies applied 
computational intelligence for short-range wind speed forecasting for this height in 
such a humid tropical climate region (or humid coastal region). Therefore, the results 
constitute a significant contribution to the scientific community. c) The short-range wind 



 
speed forecasting model is an important contribution for reliable large-scale wind 
power forecasting and integration in Brazil. To reach the objective of the present work, 
the paper is organized as follows: section 2 presents the methodology adopted in the 
paper, section 3 is the numerical results and discussions, and finally, section 4 
presents the conclusions. 

 

2. METHODOLOGY 

With respect to the computational procedure to perform this work, was adopted 
the computational intelligence model using Wavelets Packet Decomposition, Multilayer 
Perceptron, that is a class of feedforward artificial neural network, and Recurrent 
Neural Network with Levenberg–Marquardt Backpropagation training algorithm for 
short-range wind speed forecasting at Mucuri. According to [16], this type of neural 
network is the most usual for studies of this nature. Reference [17] describes that the 
aforementioned algorithm is the main neural network training algorithm. It is known that 
ANN are implemented through layers with interconnected nodes, also called neurons, 
and the definition of the number of layers is very variable, depending on the 
characteristics of each problem. They require at least three layers, being an input layer, 
a hidden layer and an output layer [18]. As all ANN needs to be trained, validated and 
tested, [19] describes that network training occurs in two phases in which each phase 
runs through the network in one direction. These two phases are called forward and 
backward. The forward phase defines the network output for a given input pattern. The 
backward phase uses the desired output and the output provided by the network to 
update the weights of its connections.  

There are different possibilities for structuring an ANN, since it is necessary to 
select the type of neuron, the number of input parameters, the number of hidden layers, 
the type of training, and testing different configurations are usually employed for 
architecture, according to [20]. To develop an ANN model it is necessary to have a set 
of input parameters and an output set. These sets will be subdivided for use in two 
different steps: network training and validation of the produced estimates. The correct 
selection of the predictors is fundamental for a good performance of the model [21]. 

The Mucuri city is located at an altitude of 7.0 m in relation to the sea level and 
it has a territorial area of 1,775 km², approximately. The Mucuri’s anemometer tower 
is located in a coastal plain, at a distance of 340.0 m from the sea, with latitude 
18°1'31.52"S and longitude 39°30'51.69"W. The software used to program and 
perform this computational procedure was MATLAB version 7.10.0 2010, together with 
the NNTool (Neural Network Toolbox) graphical interface and Wavelet Analyzer. It is 
possible to observe, in Table 1, the information of each MLP and RNN configuration 
analyzed in this paper. The number of input nodes depends on the architecture being 
analyzed. In architecture 1 (Arch. 1), the input nodes are day, month, year, hour, wind 
speed (x-axis and y-axis component), air temperature, air humidity and air pressure; 
in architecture 2 (Arch. 2), the value depends on the Wavelet level applied to wind 
speed decomposition.  

 

 

 



 
Table 1. MLP and RNN configurations. 

MLP and RNN 
config. and 

Layer 

Arch. 1 Arch. 2 

1st hidden 
layer 

2nd hidden 
layer 

Output 
node 

MLP and 
RNN input 

node 

RNN + 
Wavelets 

input node 

Config. I 9 8; 10 or 12 9 Neurons - 1 

Config. II 9 8; 10 or 12 6 Neurons - 1 

Config. III 9 8; 10 or 12 3 Neurons - 1 

Config. IV 9 8; 10 or 12 1 Neuron - 1 

Config. V 9 8; 10 or 12 9 Neurons 6 Neurons 1 

Config. VI 9 8; 10 or 12 6 Neurons 3 Neurons 1 

Config. VII 9 8; 10 or 12 1 Neuron 1 Neuron 1 

Each ANN presented in Table 1, from configurations I to VII, was trained (using 
Levenberg–Marquardt Backpropagation training algorithm), validated and tested to 
determine which would be the most efficient to perform short-term (1, 3, 6, 9 and 12 
hours) wind speed forecasting. The activation functions that define the outputs of the 
neurons in terms of their activity levels, inserted in this simulation, were the sigmoidal 
function in the form of the hyperbolic tangent function (characterized as continuous, 
increasing, differentiable and non-linear) for hidden layers and linear function to the 
output layer. The Figure 1 shows the time series used in the models which consists of 
744 data in total, corresponding to hourly mean data for each of the period November 
30, 2015, 2:00 p.m. to December 31, 2015, 1:00 p.m.. The training set with 550 data 
was used for the models’ training and validation. The prediction set consisting of 194 
data was used to verify their accuracy during the prediction stage. As one can observe 
in this figure, there is noticeable data randomness and it is difficult to find a series 
tendency or seasonality. 

Figure 1. Original wind speed time series. 

 

In this work the neural network was trained to perform the forecasting of 1 hour 
ahead and then, using it, the trained network was applied to recursively infer the 
forecasting for the next hours of the wind speed. The computational cost of this 
methodology, as applied in [5], is smaller than if it were necessary to train to predict 
the next 12 h for each input/sample of anemometric data. Therefore, to perform the 
prediction, the first phase is to identify what ANN (MLP and RNN) architecture can 
better perform the one hour forecasting of the wind speed for each height. Afterward, 
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this predicted wind speed value is assigned as input for the second hour forecasting. 
So, it is calculated the forecast of the wind speed for the second hour. This procedure, 
highlighted in Figure 2, is repeated until the nth hour of the forecasting is reached. In 

this schema, the final result of the wind speed forecasting (ws) is: 𝑤𝑠 =  √𝑢2 + 𝑣2. Next, 
the same schematic idea is used with the insertion of Wavelet decompositions. Figure 
3 is the schematic example of the procedure used to compute the wind speed 
forecasting for 1, 3, 6, 9 and 12 hours ahead forward from start time using RNN + 
Wavelet decomposition. In this idea, the final result of the wind speed forecasting is 
the sum of the predicted detail and approximation components. 

 
Figure 2. Schematic of the procedure used to 
compute the wind speed forecasting for 1, 3, 
6, 9 and 12 hours ahead forward from start 

time using artificial intelligence (MLP or 
RNN). 

 
Figure 3. Schematic of the procedure used 
to compute the wind speed forecasting for 
1, 3, 6, 9 and 12 hours ahead forward from 

start time using RNN + Wavelet. 

  

The Wavelet families applied to wind speed data decomposition were: 
Biorthogonal 3.9 level 3, Coiflet 5 level 3, Daubechies 7 level 3, Daubechies 8 level 5, 
Daubechies 9 level 7, Meyer level 3 and Symlet 7 level 3. In recent research, hybrid 
prediction models in wind power and wind speed forecasting have been proposed and 
investigated, which mainly contain the data preprocessing and forecast modeling [22]. 
The main technologies for these two modeling types are the signal decomposition 
algorithms and the prediction algorithms [23]. Thus, as the forecast time increases, it 
is expected that the quality of the predicted wind speed degrades by a certain degree, 
which will be evaluated in the next section: results and discussions. 

 

3. RESULTS AND DISCUSSIONS 

The statistical treatment employed in the results are Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 
Absolute Percentage Error (MAPE), R2 coefficient of determination, Pearson’s 
correlation coefficient (r) and percentage of data of factor of two. For these statistical 
indicators values close to 0.0 (zero) are adequate for the MAE, MSE, RMSE, MAPE 
errors, and values close to 1.0 (one) are adequate for the R2 and r coefficients. Table 
2 is a table comparison of the MSE and R2 to MLP, RNN, and RNN + Wavelet. It shows 
that the RNN + Meyer Wavelet decomposition has the best result, as can be verified 
MSE = 2.89 and R2 = 0.70. 

 



 
 

Table 2. Table comparison of the MSE and R2 to MLP, RNN, and RNN + Wavelet. 

Model Time horizon MSE R2 

MLP 

12 h ahead 

10.56 0.02 

RNN 7.37 0.33 

RNN + Biorthogonal Wavelets 5.43 0.58 

RNN + Coiflet Wavelets 3.96 0.59 

RNN + Meyer Wavelets 2.89 0.70 

RNN + Symlet Wavelets 7.18 0.36 

RNN + Daubechies 7 Wavelets 4.93 0.56 

RNN + Daubechies 8 Wavelets 3.97 0.67 

RNN + Daubechies 9 Wavelets 4.47 0.58 

 

Table 3 shows the evaluation metrics of the prediction results obtained by the 
best proposed model, RNN + Meyer Wavelet. The percentage of the data of a factor 
of two for wind speed forecasting 12 h ahead is 98.90%. Figure 4 illustrate the short-
range wind speed forecasting and the factor of two to RNN + Meyer Wavelet. 

 
Table 3. Statistical results (Errors and Regression): RNN + Meyer Wavelet. 

Prediction 
horizon 

MAE MSE RMSE MAPE Pearson R2 
Percentage of the data 

of a factor of two 

1 h 0.67 0.73 0.85 8.79% 0.95 0.91 100.0% 

3 h 1.32 2.57 1.60 17.06% 0.85 0.73 97.38% 

6 h 1.45 3.24 1.80 18.77% 0.81 0.66 95.74% 

9 h 1.38 2.85 1.69 17.73% 0.83 0.70 98.38% 

12 h 1.37 2.89 1.70 17.30% 0.83 0.70 98.90% 

 

Figure 4. Wind speed forecasting at 12 h ahead (RNN + Meyer Wavelet): a) The results of 
twelve-step predictions of the wind speed series. b) Comparison data of a factor of two (wind 

predicted/wind anemometer versus time) of the results obtained with the forecast model 
(twelve-step predictions) and the real data. c) Comparison data of a factor of two (wind 
predicted/wind anemometer versus wind anemometer) of the results obtained with the 

forecast model (twelve-step predictions) and the real data. 
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c) 

These results are important to continue research on the role of the Wavelets 
transforms in the decomposition of the time series of the wind speed for later wind 
power forecasting. It should be emphasized that the computational cost of using 
computational intelligence in studies such as those carried out in this work increases 
as the expected workload increases, but it is still lower when compared to the cost of 
mathematical modeling and numerical simulation for prediction of wind speed using 
atmospheric models such as Weather Research and Forecasting (WRF). This is 
because in the WRF are implemented and solved the equations of transport 
phenomena and fluid mechanics, such as the Euler equations for compressible and 
non-hydrostatic fluid, in the form of fluxes, using conservative variables [24]. The 
proposed model can be used to identify optimal locations of wind turbines and forecast 
irregular wind energy, for different heights. Short-term wind energy forecasting can be 
improved using this model to enhance the wind power quality 12 h ahead. 

 

4. CONCLUSION 

In the light of the statistical results recorded in this work, the application of 
computational intelligence is a viable alternative for the predictability of wind speed 
and, in this way, wind power generation, mainly due to the low computational cost, 
however one must choose the RNN + Wavelet decomposition architecture that best 
suits the project, as well as quantitatively and qualitatively analyzes the available data 
that will feed the network, since these variables directly impact the results of the 
forecast. These results are presented as a novelty, since other works that used this 
computational model to predict wind speed for 1, 3, 6, 9 and 12 hours ahead in Brazil, 
especially in the Bahia state, were not found in the literature, particularly for very high 
positions of the anemometers, where wind turbines are usually positioned. Especially, 
it can be pointed out that the study presented good results, and, as the forecast time 
increases, the produced results not degrade, as expected, making it possible to use 
this technique to produce satisfactory forecasts of wind speed for short-term 
applications (till 12 hours ahead) with low computational costs, in order to help wind 
farm operators in decision-making processes. It is suggested as future work compare 
these results with the output produced by meteorological modelling (WRF model). 

ACKNOWLEDGMENT 

We thank FIEB and SENAI CIMATEC for their computational support. 

0.1

1

10

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

W
in

d
 p

re
d

ic
te

d
 /
 W

in
d

 a
ne

m
o

m
et

er

Wind anemometer [m/s]

12h [100m] - Mucuri, Brazil



 
 

5. REFERENCES 

1 CHENG, W.Y.Y., Liu, Y., Bourgeois, A.J., Wu, Y. and Haupt, S.E., 2017. Short-term wind forecast of a 
data assimilation/weather forecasting system with wind turbine anemometer measurement 
assimilation. Renewable Energy 107, 340-351. 

2 PENG, H., Liu, F. and Yang, X., 2013. A hybrid strategy of short-term wind power prediction. 
Renewable Energy 50, 590-595. 

3 WASILEWSKIA, J. and Baczynski, D., 2017. Short-term electric energy production forecasting at 
wind power plants in pareto-optimality context. Renewable and Sustainable Energy Reviews 69, 177-
187. 

4 LIU, H., Mi, X., Li, Y., 2018. Wind speed forecasting method based on deep learning strategy using 
empirical wavelet transform, long short-term memory neural network and Elman neural network. 
Hui Liu; Xi-wei Mi; Yan-fei Li. Energy Conversion and Management. Volume 156, 15 January 2018, Pages 
498-514. 2018. 

5 ZUCATELLI, P.J., Nascimento, E.G.S., Aylas, G.Y.R., Souza, N.B.P., Kitagawa, Y.K.L., Santos, A.A.B., 
Arce, A.M.G., Moreira, D.M., 2019. Short-term wind speed forecasting in Uruguay using 
computational intelligence. Heliyon, Volume 5, Issue 5, May 2019, e01664. 

6 HU, J., Wang, J., Xiao, L., 2017. A hybrid approach based on the Gaussian process with t-
observation model for short-term wind speed forecasts. Renew Energy 2017; 114:670–85. 

7 ZHANG, J., Wei, Y., Tan, Z., Wang, K., and Tian, W., 2017. A Hybrid Method for Short-TermWind 
Speed Forecasting. Sustainability 9, 596. 

8 ERDEM, E. and Shi, J., 2011. ARMA based approaches for forecasting the tuple of wind speed and 
direction. Appl. Energy 88, 1405–1414. 

9 LIU, H.P., Shi, J. and Erdem, E., 2010. Prediction of wind speed time series using modified Taylor 
Kriging method. Energy 35, 4870–4879.  

10 LI, G., Shi, J. and Zhou J., 2011. Bayesian adaptive combination of short-term wind speed forecasts 
from neural network models. Renew Energy, 36, 352 – 9. 

11 AKINCI, T.C., 2011. Short term wind speed forecasting with ANN in Batman, Turkey. Electron Electr 
Eng 1(107), 41–5. 

12 NOGAY, H.S., Akinci, T.C. and Eidukeviciute, M., 2012. Application of artificial neural networks for 
short term wind speed forecasting in Mardin, Turkey. J. energy South. Afr. 23(4), 2-7. 

13 OKUMUS, I. and Dinler, S., 2016. Current status of wind energy forecasting and a hybrid method for 
hourly predictions. Energy Conversion and Management 123, 362-371. 

14 LIU, D., Wang, J. and Wang, H. 2015. Short-term wind speed forecasting based on spectral 
clustering and optimized echo state networks. Renew Energy 78, 599–608. 

15 HU, Q., Zhang, R. and Zhou, Y., 2016. Transfer learning for short-term wind speed prediction with 
deep neural networks. Renew Energy 85, 83–95.  

16 QIN, S., Liu, F., Wang, J. and Song, Y., 2015. Interval forecasts of a novelty hybrid model for wind 
speeds. Energy 1, 8–16. 

17 CERVONE, G., Clemente-Harding, L., Alessandrini, S. and Monache, L.D., 2017. Short-term 
photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble. 
Renewable Energy 108, 274-286. 

18 RUSSEL, S. and Norvig, P., 2010. Artificial Intelligence: A Modern Approach. Stuart J. Russell and 
Peter Norvig. Third Edition. Pearson Education, Inc., 1153p. 

19 PELLETIER, F., Masson, C. and Tahan, A., 2016. Wind turbine power curve modelling using artificial 
neural network. Renewable Energy 89, 207-214. 

20 HAYKIN, S., 1999. Neural Networks: A Comprehensive Foundation. Simon Haykin. Second Edition. 
Pearson Education Inc. Hamilton, Ontario, Canada, 823p. 

21 MORI, H. and Umezawa, Y., 2009. Application of NBTree to Selection of Meteorological Variables in 
Wind Speed Prediction, transmission & Distribution Conference & Exposition: Asia and Pacific, 
Seoul, Korea, 2009. 

22 SUN S, Qiao H, Wei Y, Wang S., 2017. A new dynamic integrated approach for wind speed 
forecasting. Appl Energy 2017;197(June):151–62. 

23 TASCIKARAOGLU A, Uzunoglu M., 2014. A review of combined approaches for prediction of short-
term wind speed and power. Renew Sustain Energy Rev 2014; 34:243–54. 

24 SKAMAROCK, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Huang, X.Y., Wang, W. and 
Powers, J.G., 2008. A Description of the Advanced Research WRF Version 3 (NCAR Technical 
Note), Mesoscale and Microscale Meteorology Division do NCAR. Boulder, Colorado, USA. 


