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Abstract: This article introduces concepts of 5G networks and presents a 
mathematical model of network interference caused by a sudden increase in the 
number of users. Fluctuations of the number of users cause a non stationary network 
traffic and the usual tools have little use. So, the proposed model is obtained through 
the stochastic integration of the differential equation that describes the treated non 
stationary phenomena. Monte Carlo simulations were made, then, to be compared with 
the analytical results, showing that the simulations corresponded to the expected. The 
stochastic integral revealed to be efficient to attack the problem. Therefore, with the 
proper modelling, it is possible to research techniques for mitigating the epidemic 
interference. 
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interference analysis; massive IoT. 

 

 

 

EFEITO DA INTERFERÊNCIA EPIDÊMICA NA PROBABILIDADE DE 
ERRO DE UM SISTEMA CELULAR 5G 

 

Resumo: Este artigo introduz conceitos de redes 5G e apresenta um modelo 
matemático de interferência epidêmica na rede causada pelo crescimento abrupto do 
número de usuários. Flutuações no número de usuários causam um tráfego não 
estacionário na rede e as ferramentas usuais têm pouca utilidade. Portanto, o modelo 
proposto é obtido a partir da integração estocástica da equação diferencial que 
descreve o fenômeno tratado, não estacionário. Foram feitas então simulações de 
Monte Carlo para comparação com os resultados analíticos, mostrando que as 
simulações corresponderam com o esperado. A integral estocástica se mostrou 
eficiente para atacar o problema. Assim, com a modelagem apropriada, é possível, 
em trabalhos futuros, pesquisar técnicas para mitigar a interferência epidêmica. 

Palavras-chave: Comunicações sem fio; redes 5G; integração estocástica; análise 
de interferência; IoT massivo. 
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1. INTRODUCTION 

 

The increase of data traffic in cellular networks motivates the design of more 
efficient networks with higher capacity [1]. The improvement on the mobile networks 
advances the urban environment and also opens space for industrial applications, 
which includes Internet of Things (IoT). 

A 5G network is divided into two main parts: the 5G Radio Access Network 
(RAN), which is responsible for the wireless network communication interface aspects, 
and the 5G Core Network (CN), which is the computational center of the network, 
responsible for security aspects, mobility and external medium access, such as, the 
Internet. 

 

1.1 Description of 5G technology 

 

The 5G technology implements many functionalities to expand the use of the 
network, allowing new applications, which were not viable due to limitations of the 
previous mobile networks. The Third Generation Partnership Project (3GPP), a 
standardizing organization for telecommunications, periodically releases documents 
with detailed directions about new technology implementation. In 3GPP release 15, 
the 5G New Radio (NR) is specified in two architectures: non-standalone (NSA) and 
standalone (SA). 

Compatibility with previous technologies is not a requisite of the 5G network, 
however, NSA architecture relies on harmonic coexistence between 5G and Long-
Term Evolution (LTE). The NSA architecture can be seen in Fig. 1 (a), in which the 5G 
radio access network (5G RAN), represented by the radio base station nodes gNB 
(next Generation Node B), requires an existing LTE radio base station eNB (evolved 
Node B) in order to transmit the control signals and access LTE core network. 

This architecture is interpreted as an intermediary form of development to reach 
the future Stand Alone (SA) architecture, a uniquely 5G network. In SA architecture, 
as shown in Fig. 1 (b), it is possible to observe that one single base station transmits 
control and data signals, making it possible to reach the maximum capacity of a 5G 
network. One important fact is that 5G Core also permits connection to LTE radio base 
stations, which facilitates compatibility with the previous generations of technology. 

 

Figure 1 – 5G New Radio Architectures 
 

 
 
 
 
 
 
 

 
 

(a) 5G NR (NSA)    (b) 5G NR SA    
 

Source: Frederico & Sabino (2019) [2]  
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The 5G technology aims to satisfy some Key Performance Indexes (KPI), to 
satisfy more intelligent, demanding, reliable, safe and sustainable applications by new 
enhancements.   

Many techniques were implemented in 5G in order to increase the signal 
transmission efficiency and number of simultaneously connected devices, such as 
Quadrature Amplitude Modulation (QAM), Orthogonal Frequency Division Multiple 
Access (OFDMA), massive Multiple Input Multiple Output (m-MIMO) techniques along 
with beamforming. Network slicing was also implemented, which is a technique to 
separate virtual networks within the same physical network. 

The modulation techniques for 5G NR are, mainly, 16QAM, 64QAM, 256QAM 
and Quadrature Phase Shifting Keying (QPSK), and this last modulation scheme is 
used for broadcast and downlink or uplink control. These techniques make it possible 
to associate many bits to a single symbol.  

Besides the implemented techniques, the core of 5G has changed the 
architecture to a Service Based Architecture (SBA), which makes it easier to virtualize 
the network functions. The most important entities are: Access and Mobility 
Management Function (AMF), which manages registers, connections and mobility; 
User Plane Function (UPF), which performs the routing and packet forwarding, 
interconnection with the data network and application of policies; and the Session 
Management Function (SMF), in charge of user data traffic related signaling. By 
utilizing new network management tools, the fifth generation brings along with it more 
data traffic reliability when compared to the previous cellular technologies. 

2. METHODOLOGY 

It is usual to assume stationarity in the analysis of symbol or bit error probability, 
because a non-stationary environment would complicate matters in terms of 
mathematical modelling. 

 But, in cellular communication systems, the interference is usually dependent 
on the state of the network. For example, if the users are accessing the network early 
morning, or leaving the telephone system late night, the traffic is clearly non-stationary, 
and so is the interference [3]. 

 For non-stationary processes, such as in the case of a sudden increase in 
telephone traffic, the usual linear tools, such as basic stochastic processes, are less 
useful, but stochastic integration can be used to attack the problem, based on a 
stochastic differential equation formulation, in place of the usual mathematical 
approach that uses correlation. 

 

2.1. Computation of the Interference Instantaneous Power 

The stochastic processes related to a cellular communications system that 
enters an epidemic state, when most users rush to place calls, are usually non-
stationary, which means that their statistical averages, or moments, also vary with time.  

This makes it difficult to use the traditional correlation analysis to treat them. In 
this case, stochastic integration is a useful tool to attack the problem, to obtain a 
problem formulation, from the modelling of the interference based on a stochastic 
differential equation. 
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The stochastic calculus began with the study and modelling of market prices, 
this is, the fluctuation of the stock value as a function of time. In this case, the investors 
work based on the variation of the potential gain or loss, 𝑑𝑋(𝑡), as a proportion of the 
invested sum 𝑋(𝑡). 

In the present case, in fact, what matters is the relative instantaneous power, 
𝑑𝑃(𝑡)/𝑃(𝑡), of a certain signal, as it reacts to the channel fluctuations. This means that 
the power variation should be proportional to a Wiener process $W(t)$, which is a 
function of the interference in the channel, that is, it increases with the rise in 
interference, [4] 

 
 

𝑑𝑃(𝑡) =  𝛽𝑃(𝑡)𝑑𝑊(𝑡),     (1) 

 
which is an informal manner to express the corresponding integral equation, 
 

𝑃(𝑡 + 𝜏) − 𝑃(𝑡)  =  𝛽 ∫
௧ାఛ

௧
𝑃(𝑢)𝑑𝑊(𝑢).     (2) 

 
An immediate question associated to the equation solution is related to the non-
differentiability of a Wiener process 𝑊(𝑡), at any point in time. A way to circle the 
problem has been found, and is known as the theory of stochastic integrals, or the 
study of stochastic differential equations [5, 6]. 
The Itô general stochastic equation is given by 
 

𝑑𝑃(𝑡)  =  𝑎[𝑃(𝑡), 𝑡]𝑑𝑡 +  𝑏[𝑃(𝑡), 𝑡]𝑑𝑊(𝑡),   (3) 

 
in which 𝛼𝑃(𝑡)𝑑𝑡 is the drift function, or model trend, and 𝛽𝑃(𝑡)𝑑𝑊(𝑡) is the dispersion 
function, or volatility, of the stochastic process. 
 

2.2. Model for the Interference Instantaneous Power 

When formulating a stochastic model to represent the interference variation along with 
time, it is important to consider that the interference increase rate is proportional to the 
existing amount of interference, because, as in an epidemic, the interference grows at 
a rate that is proportional to the number of users [7]. 
  
On the other hand, the incremental variation of the interference is proportional to the 
differential variation 𝑑𝑊(𝑡) of a stochastic process, 𝑊(𝑡), which usually has a 
Gaussian distribution, multiplied by the total power of the active users, $P(t)$, and 
adjusted by the parameter 𝛽, which remains to be found, based on the channel 
specifications. 
  
The process 𝑊(𝑡) is the result of a combination of all interference factors,  𝑊௜(𝑡), which 
can be found in the cellular communication system. Thus, by the Central Limit 
Theorem, 𝑊(𝑡) has a Gaussian probability distribution.  
  
Combining both assumptions, results in the following stochastic differential equation 
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𝑑𝑃(𝑡)  =  𝛼𝑃(𝑡)𝑑𝑡 +  𝛽𝑃(𝑡)𝑑𝑊(𝑡),    (4) 

  
In order to solve the stochastic differential equation obtained with the interference 
model, using the generic formulation for stochastic differential equations, one must 
consider that the drift function is proportional to the stochastic process, this is, 
𝑎[𝑃(𝑡), 𝑡 ]  =  𝛼𝑃(𝑡),  that the dispersion function is modelled as 𝑏[𝑃(𝑡), 𝑡 ]  =  𝛽𝑃(𝑡), 
and that one can use the Itô formula for the logarithm function 𝑓(𝑥, 𝑡) = 𝑙𝑜𝑔 (𝑥). 
  
Following the procedure established by Itô, for the solution of the equation, one obtains 
 

𝑃ா  = 𝑃(0) 𝑒
൬ఈି

ഁమ

మ
൰௧ାఉௐ(௧)

.      (5) 
 
This solution shows, for the proposed stochastic process, that the interference power 
grows exponentially in time, controlled by the parameters 𝛼 and 𝛽, that remain to be 
determined. It is possible to note a random variation on the curve, as a result of the 
stochastic process 𝑊(𝑡). 
  
For a stochastic process, 𝑊(𝑡), that corresponds to the total interference, if its 
distribution is Gaussian, it is possible to compute the associated interference 
distribution, using the transformation of probability density function mathematical 
operation. 
  
Note that the stochastic process is non-stationary, in the long run, because its average 
value depends on time. Besides, the probability distribution of process 𝑃(𝑡), that 
represents the interference, is not Gaussian, as is usually assumed in the computation 
of the error probability, using the usual theory of stochastic processes. 

 

2.3. The influence of the combined interference 

As discussed in the previous section, the stochastic process 𝑊(𝑡) results from the 
combination of several interferers, 𝑊௜(𝑡), as the users decide to place calls at the same 
time, or in the same time interval.  
 The probability distribution of the interfering power, 𝑃(𝑡), can then be found, giving 

𝑓௉ (𝑝)  =  
௉బ ௘

ష
(೗೙ ೛ష೗೙ ುబ )మ

మഁమ഑ೈ
మ

ఉ௣ ೢ√ଶగ
, 𝑠𝑒 𝑝 >  0, 𝑒 𝑛𝑢𝑙𝑜 𝑛𝑜 𝑐𝑎𝑠𝑜 𝑝 ≤  0,  (6) 

 

3. RESULTS AND DISCUSSION 

 

The random process that represents the interference in a communication 
system that suffers from a pandemic attack, has a Lognormal probability distribution, 
instead of the usual assumption of a Gaussian distribution. 

Fig. 2 (b) illustrates the effect of the interference caused by the Lognormal 
probability density function (pdf), on a BPSK signal, compared to the effect of Gaussian 
interference, displayed in Fig. 2 (a). 
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Figure 2 – BPSK Signal Under Interference Effect 

 
(a) Normal interference    (b) Lognormal interference 

   
Source: Prepared by the author 

 

That distribution can be used to compute the symbol or bit error probability for 
different modulation schemes. The Lognormal probability density function is a heavy 
tail distribution, that is, it decays slower than an exponential. Therefore, there is an 
expected increase in the error probability during the power adaptation process.  

In order to compute the bit error rate for a BPSK signal, in the case of the zero 
mean Gaussian distribution, it suffices to compute the following integral, 

𝑃ா  =  ∫
ஶ

଴

ଵ

ఙ√ଶగ
𝑒

ି
(ೣషಲ)మ

మ഑మ 𝑑𝑥 ,     (7) 

in which 𝐴 is the modulated signal amplitude. The preceding equation can be rewritten, 
using the transformation, 𝑡 = (𝑥 + 𝐴)/𝜎 , 𝑑𝑥 =  𝜎𝑑𝑡., to obtain the error probability, 

𝑃ா  =  ∫
ஶ

ಲ

഑

ଵ

√ଶగ
𝑒ି

భ

మ
௧మ

𝑑𝑡 ,     (8) 

That can be simplified, using the 𝑄(·) function, to 

𝑃ா  =  𝑄 ቀ
஺

ఙ
ቁ .       (9) 

This puts into evidence the distribution symmetry, and the fact that the errors 
are equiprobable. 

For a Lognormal distribution, which is asymmetric, the same fact does not occur. 
In this case, the influence of the interference that affects symbol 𝐴 in the computation 
of the error probability is higher. It approximates the total error probability in case that 
the transmission power is high. 

For a low transmission power, the influence of the interference that occurs in 
symbol −𝐴 becomes more evident, because the graphic of the Lognormal distribution 
is displaced to the left and can cross the coordinate axes. In this case, the error 
probability increases suddenly, causing a discontinuity in the curve. 

The error probability for the transmission of symbol −𝐴 is given by 

𝑃ா(−𝐴)  =  
ଵ

ଶ
∫

ஶ

଴

ଵ

(௫ା஺)ఙ√ଶగ
𝑒

ିቀ
೗೙(ೣశಲ)

మ഑
ቁ

మ

𝑑𝑥,   (10) 

in which −𝐴 is the mean value of the distribution that results from the power 
probability density function transformation. 
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This transformation, 𝑋(𝑡)  =  ඥ𝑃(𝑡), displaces the interference to the origin of 
the coordinated system, and the transmitted signal has zero mean. Because of the 
asymmetry of the Lognormal distribution, the error probabilities are different for each 
symbol 𝑃ா(−𝐴) ≠  𝑃ா(𝐴). 

Monte Carlo simulation has been used to test the results, to compare with the 
analytical plots. The results are presented in Figs. 3 (a) to (d), for the BPSK modulation. 
It is possible to note, for simulated variance values, that the bit error probability 
obtained with the Lognormal distribution is always above that obtained from the 
Gaussian distribution, that represents the common noise. Also, the Lognormal BER 
curve decays at a slow rate, as compared to the Gauss BER plot.   
   

 

Figure 3 – BER as a function of A in BPSK modulation 
 

 
(a) With σ = 0,75     (b) With σ = 1,00 

   

 
(c) With σ = 1,25     (d) With σ = 1,50 

   
Source: Prepared by the author 

 

For such a non-stationary process, Itô integration has been used to solve the 
problem, which, for the defined constraints, resulted in a Lognormal probability density 
function, that, different from the Gaussian distribution, is asymmetrical. The long-term 
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interference average and variance values follow exponential curves, which depend on 
certain system parameters. 

 

4. CONCLUSION 

 

It is usual to assume stationarity in the analysis of symbol or bit error probability, 
because the analysis of a non-stationary environment is mathematically complex.  

But, in cellular communication systems, the interference is usually dependent 
on the state of the network, and if the users decide to access the network all of a 
sudden, the traffic modelling, as well as the interference, is non-stationary.  

This article presented a mathematical modelling of the effect of an interference 
accumulation, caused by a sudden increase of users in a digital cellular system, also 
called an information outbreak or epidemic interference.   

For such a heavy tail distribution, there is an expected increase in the error 
probability during the adaptation process. 
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