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Abstract: This paper applies a hybrid model of wind speed forecasting in short-term 
to the watershed basin of Paranapanema, Brazil, as strategy to decrease 
computational demand typically observed in exclusively WRF-based predictions, while 
deals with an also common lack of measured atmospheric variables in greater spatial 
and time frame resolution. The model uses adjusted variables from real data simulated 
WRF outputs for the target area as input of a MultiLayer Perceptron (MLP) Neural 
Network (ANN) configured with Feed-forward Backpropagation algorithm, tested with 
different combinations of parameters. The association here proposed aims to match 
the best of both methods to mitigate each other’s typical issues and provide, supported 
by future works, even better accurate results also for other atmospheric elements.   
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MODELO HÍBRIDO DE PREVISÃO DE VELOCIDADE DO VENTO A 
CURTO PRAZO UTILIZANDO WRF E REDES NEURAIS ARTIFICIAIS 
 
Resumo: O modelo híbrido aqui aplicado à bacia hidrográfica do Paranapanema, 
Brasil, sugere a diminuição da demanda computacional tipicamente observada em 
previsões baseadas exclusivamente em WRF; e lida com a também comum baixa 
oferta de dados atmosféricos em maior resolução espacial e temporal. Variáveis 
ajustadas, oriundas de simulações de dados reais no WRF para a área alvo, são 
utilizadas como dados de entrada de uma Rede Neural (RNA) MultiLayer Perceptron 
(MLP) com algoritmo Feed-forward Backpropagation (para diferentes combinações de 
parâmetros). Esta associação visa combinar o melhor dos dois métodos para mitigar 
os problemas típicos um do outro e fornecer, apoiado por trabalhos futuros, resultados 
ainda melhores e precisos também para outros elementos atmosféricos. 
Palavras-chave: Ciência Atmosférica; Inteligência Artificial; MLP; RNA; WRF. 
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1. INTRODUCTION 
  

The efforts regarding atmospheric studies reflect an increasing awareness that 
environmental conditions and anthropogenic elements are both connected in a cause 
and consequence circle.  In general, the development of new techniques is not single-
beneficent neither restricted to one or another area's motivation. An example of that, 
Artificial Intelligence (AI) has implemented many traditional methods in the last few 
years. This kind of combination, between old and new, economic and environmentally 
engaged, has frequently provided not only more accurate results but also more efficient 
ways to obtain them. That said, this paper can be placed in line with the current trend 
while proposing the combined use of the Weather Research and Forecasting program 
(WRF) and AI to predict wind speed in short range and scale. The hybrid method here 
suggested shows itself at this point as a reasonable alternative while demanding less 
computational capacity and abording an aspect shared by both: economic and 
environmental matters. As a potential renewable energy source, the relevance 
attributed to the winds analysis emerges from environmental public policies in the 90's 
and goes further on in the power industry, as a profitable way to obtain clean energy 
and help society achieving sustainability in its energy and emissions matrix. The 
benefits of wind power industry implementation have local and global impacts 
(environmental and economically) [1-3].  

Widely applied to atmospheric researches (academic and commercially), the 
WRF model makes use of global and synoptic-scale data, i.e. from the Global Forecast 
System (GFS) and the North American Mesoscale Model (NAM, former ETA) as 
simulation input to deliver numerical weather forecasting. Although the WRF system 
operates several transformation-steps over those inputs data, as a mesoscale model, 
WRF is also limited inasmuch as demanded of a greater resolution. The atmospheric 
processes within the planetary boundary (PBL) have more influence over the 
atmospheric dynamic at smaller time and space scales, which (when in use of WRF 
for these cases) requires different physical parameterizations that usually are 
determined empirically to apply more specific domain characteristics. The fact that 
WRF does not show the same practical applicability supporting analysis when the 
scale becomes shorter (in time and space) highlights the opportunity of filling this gap 
with new proposals [4,5].  

Techniques of deep learning are becoming more often applied to climate and 
weather analysis, air quality forecasting, and even for renewable energy matters, such 
as solar and wind power feasibility studies. Beyond the idea of enhancing the literature 
with more analysis regarding this still innovative use of the AI, the strategy of keeping 
the partial use of WRF in a hybrid model is to deal with a gap, not yet covered by the 
state-of-arts, which is the shortage of reliable and specific local data. Overcoming the 
WRF model completely turns to be more complex when the simulation inputs are 
limited to global and synoptic-scale data, which are largely available but mostly in lower 
resolution (considering local analysis goals). The implementation of an AI model, 
following the WRF application over the quality of input data (originally from global-scale 
widespread sources), emerges as an innovative alternative to deal with another 
common issue for atmospheric and environmental analysis: the high computational 
demand by models as WRF itself. Both methods combined, should increase efficiency 
at smaller-scaled simulations, demanding less of computational use and bypass 
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eventual lack of data. Briefly described, this work proposes the development of an AI 
model that uses WRF output results as spin data for the prediction of wind speed [5,6]. 
  
2. METHODOLOGY 
  

The framework was based on four main stages: (1) model domain definition, (2) 
simulations with WRF model, (3) Artificial Neural Network (ANN) construction and 
training, and (4) the data exploratory analysis - considered as an interstitial recurrent 
and inherent effort for the quality of the other three. The domain area (represented at 
Figure 1) and simulation period selected for this work have been targeted of previous 
study-cases developed at the Manufacturing and Technology Integrated Campus 
(SENAI CIMATEC): the watershed basin of Paranapanema reaches 247 cities located 
between the Brazilian states of São Paulo and Paraná. The area houses a relevant 
share of national economic activities, naturally influenced by atmospheric conditions 
and has several weather stations from the Brazilian National Institute of Meteorology 
(INMET). The point in this definition is to get hold of a validated configuration package 
for WRF (as a first step) while focusing on the adjustment of the AI model to the wind 
data behavior. The georeferenced information reaching the ANN input layer comes 
originally from the Global Data Assimilation System Model (GDAS) after a 
transformation process on WRF considering specificities of the domain through the 
configuration set shown in Table 1. The Advanced Research WRF (ARW), typically 
applied to real data cases [4], has been selected, so as further domain configurations. 
  

Figure 1. Paranapanema river basin, WRF domains and INMET weather stations 
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Table 1. Physical and Domain Parameterization for WRF 

Parameter Simulated 

Microphysical Properties Eta 

Cumulus Betts-Miller-Janjić 

Long and Short-wave Radiation RRTMG 

Surface / Planetary Boundary Layer MYNN /  MYNN2.5 

Surface Noah Land-Surface 

Aerosol Without aerosol 

Grid Resolution (D01 | D02 | Cropped) 9km 3km 3km 

Number of Cells (Vertical x Horizontal) 100 x 118 189 x 246 183 x 240 

Domain Dimensions (km) 900 x 1062 567 x 738 549 x 720 

Simulated Period (2017) | Spin-up 72h 28/04 - 16/06 01/05-15/06 

  
For the analysis of AI model, only WRF outputs from the inner domain (D02) 

were considered due to its better resolution. After adjustment respecting a minimum of 
48h spin-up and 6 border lanes crop [4], the amount of 1,104 hourly samples per cell 
multiplied by 43,920 grid-cells available provided 48,487,680 variously behaved input 
samples of each relevant meteorological variable, that are listed in Table 2. The whole 
process from WRF output on, including exploratory analysis and ANN working process, 
has been developed in programming language Python (using the software Anaconda 
and Jupyter Notebook). 
  

Table 2. WRF Outputs and ANN Input Variables 

WRF Output Description  

U10 / V10 x / y-wind component (at 10m) 

LU_INDEX land use category 

HGT / PBLH terrain / PBL height 

XTIME minutes since simulation start 

XLAT / XLONG latitude / longitude (south / west is negative) 

LANDMASK land mask (1 for land, 0 for water) 

T2 temperature (at 2 m) 
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PSFC surface pressure 

Q2 water vapor mixing ratio at (2 m) 

RAINNC accumulated total grid scale precipitation 

SWDOWN downward short-wave flux at ground surface 

   
Other two variables besides those on Table 2 have been also used as input for 

the ANN. Both came from the vector sum between U10 and V10. One, the target itself, 
represents the magnitude of the resultant wind speed, while the other considers only 
the direction translated to an angular coordinate system (0-359°).  Once the wind 
speed magnitude was defined as prediction target in this study-case, a systematic 
review revealed the Multilayer Perceptron (MLP) as an efficient ANN type for this task 
in short-range conditions [6-9]. Applied to the MLP, the Feed-forward Backpropagation 
algorithm has also improved the model's efficiency [10-13]. Table 3 brings the common 
parts between configuration sets used. Other parameters for the MLP architecture are 
more flexibly determined and should be adjusted along the building process. A simple 
input-hidden-output 3-Layer network structure, with 16 neurons on the two first and 1 
neuron on the output layer, was used to choose between three activation functions. 
The configuration with a better performance at this first test has been chosen for 
following architecture validations. From those configurations explored, the best ones 
(classified by number of layers) were selected to be presented in the Results section. 

  
Table 3. MLP Explored Parameters 

Parameter Description 

ANN Type Multilayer Perceptron 

Algorithm Feed-forward Backpropagation 

Input Variables / Target Adjusted WRF Outputs / Wind speed 

Hidden Layers 1 - 4 (with 16, 13, 13 and 10 neurons/ layer) 

Activation Functions Tahn (ReLU and Linear only firstly tested) 

Learning Rate / Validation Split 0.01 – 0.0001 / 0.30 - 0.40 

Train Loss / Metrics / Optimizer MSE / MAE / RMSprop 

Epochs / Batch Size 16 – 1600 / 8 – 32 

 

To validate the information obtained from the MLP, the statistical metrics 
compare the results simulated by the ANN with the original timeseries from WRF 
output, adjusting it with a shift of one time-step ahead, to represent the same effect of 
predicting this variable one hour ahead. The dataset for training the network gets 
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information from cells of D02 in perimeter closer to the 9 INMET stations, that are 
shown in Table 4. The grid-cells that match with the position of those stations have 
been reserved for the test dataset – so that the metrics based on WRF adjusted outputs 
share the same reference as the WRF real data simulation did during the previous 
validation process.  
  

Table 4. INMET Stations over the D02 WRF Domain 

Index INMET Station Latitude Longitude Sequenced 
Samples ANN 

S01 Castro 24.7870 S 49.9993 W 0 - 1103 

S02 Irati 25.5028 S 50.6376 W 1104 - 2207 

S03 Itapeva 23.9819 S 48.8858 W 2208 - 3311 

S04 Japira 23.7733 S 50.1806 W 3312 - 4415 

S05 Joaquim Távora 23.5053 S 49.9464 W 4416 - 5519 

S06 Londrina 23.3256 S 51.1417 W 5520 - 6623 

S07 Maringá 23.4054 S 51.9328 W 6624 - 7727 

S08 Presidente Prudente 22.1199 S  51.4086 W 7728 - 8831 

S09 Ventania 24.2804 S 50.2102 W 8832 - 9935 
  

3. RESULTS AND DISCUSSION 
  

Since the first configuration set tested (simple 3-Layer ANN), the network has 
been able to reproduce the behavior of the wind speed average magnitude with 
reasonable precision. However, there were no statistically significant differences 
increasing the number of hidden layers as well as considering different number of 
epochs, batch sizes and learning rates - as initially pointed (in the methodology topic) 
on Table 3 and complemented on Table 5. 
   

Table 5. Configuration Sets of Architecture and Metrics of Hybrid Model x WRF 

Archit. Layer 2 Layer 3 Layer 4 Layer 5 MAE MSE R² Pearson r  

Config. I 16 n - - - 0.4274 0.3873 0.7781 0.8821 

Config. II 13 n 10 n - - 0.4375 0.3923 0.7752 0.8826 

Config. III 13 n 13 n 10 n - 0.4256 0.3894 0.7769 0.8824 

Config. IV 13 n 13 n 10 n 10 n 0.4312 0.3974 0.7723 0.8820 
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A slight tendency of overestimation for extreme conditions has been recurrently 
noticed in the results, as one can see in Figure 2. Similar patterns and precision have 
been also obtained in literature [10] with MLP for wind speed prediction, using as data 
inputs information locally measured instead of GFS or WRF outputs (as defined in this 
work). More recently, recurrent and convolutional neural networks (instead of MLP) 
have been applied [14] to forecast, not wind speed, but another atmospheric variable: 
tropospheric ozone – showing similar accuracy as these results, for even longer time-
ranges (more time-steps ahead). 

 
Figure 2. Hybrid Model Prediction (for 1h ahead) x Conventional WRF Real Data Simulation 

 
 

4. CONCLUSION 
  

Although the approach tested in this paper considers a short-range target (one 
time-step ahead), it has shown effectiveness to emulate the wind speed behavior for 
the proposed locations (Table 4) never used to train the network, just using data from 
a previously executed WRF run. An enlargement of the prediction time range should 
be a suggestion for future works, as the similarity with the real data could also be 
optimized by demand [9] for the higher wind speed conditions. The combination of 
types of networks has been indicated [13] as an efficient way to optimize the fit 
performance. Other types of ANNs, more specialized for time series forecasting – like 
deep and recurrent neural networks [14] – can also be further investigated. 
Furthermore, a more robust and complete AI model can be developed in order to, 
based on this approach, predict other important meteorological parameters from WRF 
runs, such as air temperature, humidity, pressure, planetary boundary layer height, 
etc.  
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