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Abstract: The objective of this work is to describe a methodological proposal for the 
development of a solution of the fractional two-dimensional diffusion-advection 
equation considering a non-homogeneous planetary boundary layer (PBL). The 
method ADMM (Advection-Diffusion Multilayer Method) is used, which provides a 
semi-analytical solution based on the discretization of the PBL in sublayers, and the 
advection-diffusion equation is solved by applying the Laplace transform technique, 
now including the novelty of the conformable derivatives. This procedure generates a 
new methodology called  - ADMM.  
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UMA NOVA METODOLOGIA PARA A SOLUÇÃO DA EQUAÇÃO DE 
DIFUSÃO-ADVECÇÃO NA CAMADA LIMITE PLANETÁRIA USANDO 
DERIVADA CONFORMÁVEL 

 

Resumo: O objetivo deste trabalho é descrever uma proposta metodológica para o 
desenvolvimento de uma solução da equação difusão-advecção bidimensional 
fracionária, considerando uma camada limite planetária não homogênea (CLP). 
Utiliza-se o método ADMM (Advection-Diffusion Multilayer Method) que fornece uma 
solução semianalítica baseada na discretização da CLP em subcamadas e a equação 
de advecção-difusão é resolvida pela aplicação da técnica da transformada de 
Laplace, agora incluindo como novidade a derivada conformável. Este procedimento 
gera uma nova metodologia denominada  - ADMM. 
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1. INTRODUCTION 

Fractional calculus has recently attracted attention worldwide for its wide range 
of applications in complex systems. The properties of fractional-order derivative 
operators generate real-world problem models with better prediction compared to 
modeling that apply integer-order derivatives. Mathematical modeling is a robust 
instrument for the development of studies in which models of natural phenomena are 
developed. The modeling is applied in several investigations of different aspects of 
meteorological conditions, dispersion mechanisms, mass and energy transport 
mechanisms, topographic characteristics, etc. In the atmospheric dispersion of 
pollutants, research focuses on environmental impacts and damage to health, standing 
out in the scientific community for the importance of developing and applying different 
mathematical models. Thus, mathematical modeling attracts the attention of 
researchers in the sense of applying new methodologies and techniques that more 
adequately represent these phenomena. 

In this perspective, the objective of this work is to obtain a new methodology to 
simulate the behavior of the dispersion of pollutants considering the inhomogeneous 
turbulence in the vertical direction, applying the ADMM (Advection-Diffusion Multilayer 
Method) methodology [1,2]. The novelty of the present work is that the combination of 
this methodology with the conformable derivatives results in a new methodology to 
study the atmospheric dispersion process [3]. The ADMM approach applies the 
Laplace transform technique with numerical inversion and considers PBL as a 
multilayer system in which each layer the diffusivity of the eddies and the wind are 
constant. The main characteristic of this method is based on the following steps: step-
by-step approximation of turbulent diffusivity and wind speed, application of the 
Laplace transforms to the diffusion-advection equation, semi-analytical solution of the 
set of ordinary linear equations obtained from the application of Laplace transform and 
construction of pollutant concentration by numerical inversion of Laplace transform. 

2. METHODOLOGY 

The conformable derivative represents a new and simple definition of a 
fractional derivative [4,5]. This new definition turns out to be a natural extension of the 
usual derivative and satisfies practically all the specifics of integer-order derivatives, 
thus meeting, for example, properties such as the derivative of the product and the 
quotient of two functions, and the chain rule. Since the other definitions of fractional 
derivatives do not satisfy these properties. 

So, if f diferenciável differentiable, then,  

             
1 ( )

[ ( )]
df x

T f x x
dx





−= =                                           (1) 

where T  represents the conformable derivative [3].  

The fractional diffusion-advection equation can be written as follows: 
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Normally, linear integer-order equations are simpler to obtain the solution. 
However, results obtained in recent works with validated simulations in line with 
experiments widely known in the literature are the motivation to apply the conformable 
operator in this work [7,8,9,10].  

Thus, introducing Eq. (1) into (2), results: 
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It is observed that the structure of equations (2) and (3) was modified through 
the insertion of fractional order parameters. This procedure, from a physical point of 
view, causes dimensional inconsistency in the solution, requiring dimensional 
corrections in the fractional equation. Then, a parameter is inserted that allows 
correcting the dimension of the physical quantities present in the equation. Thus, the 
procedure adopted in the work of Gomez-Aguilar [11] is adopted, where an auxiliary 

factor is introduced 
1  −

 in equation (3). 
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The equation (4) allows to improve the understanding of the dispersion process 
of air pollutants with application of the fractional derivative in the advective term and 
with a semi-analytical solution to be obtained from the combination of the conformable 
derivative with the ADMM method [1,2]. 

2.1 The ADMM method 

To solve Eq. (4), the ADMM method is used [12], which consists of dividing the 
PBL (Planetary Boundary Layer) into sublayers so that the fractional advection-
diffusion equation has dependence on the variable z. Figure 1 show schematically the 
subdomain of the variable z, where the layer in which there is emission of pollutants is 
denoted by n*. 
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Figure 1. Schematic representation of the ADMM model [2] 

 

In each sublayer, a stepwise approximation is taken, in which the average 
values of the parameters that depend on height are considered, such as the eddy 
diffusivities and the wind speed profile. Thus, N similar problems are obtained, coupled 
by conditions of concentration and flow continuity interfaces. In this way, Eq. (4) can 
be rewritten as a multilayer system: 

 
2

2

( , ) ( , )
, 0 1n n

c X z c X z
u K

X z
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 
=  

 
                               (5) 

 

with 1 , 0 ; 1,2,3,...n nz z z X n N+   = , where N is the number of sublayers in which 

the PBL was divided and 𝑐𝑛 is the concentration at the nth layer. Note that a variable 
change was made, 

1 1

0

x

X x dx  − −=                                                       (6) 

Following the ADMM methodology, to account for the vertically inhomogeneous 
turbulence (which is dependent on z), continuity conditions are imposed for the 
concentration and concentration flux at the interfaces: 

1n nc c +=  

1
1

n n
n n

c c
K K

z z

+
+

 
=

 
 

where 1,2,...( 1)n N= − . In this way, N problems arise that are interconnected by the 

conditions of the continuity of the concentration and flux, where nK  and nu  assume a 

constant average value in each sublayer. 
For the solution of Eq. (5), it is necessary to specify the source and boundary 

conditions. In this way, the following source condition is considered: 

(0, ) ( )s

Q
c z z H

u
= −                                                  (7a) 
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where Q is the emission rate, δ is the Dirac delta function and Hs is the height of the 
source. In addition, the following boundary conditions are imposed: 

0 ,
c

K z h
z


= =


                                     (7b)                                                                                                  
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z


= =


                                    (7c) 

where vd is the deposition velocity of the gaseous pollutant. It is selected the lower 

boundary condition at oz , the roughness length, the height corresponding to that at 

which a deposition velocity may have been measured (typical value of oz  is 1 m). 

By applying the Laplace transform to the variable X in Eq. (5) results: 
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and the solution is given by: 
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and g1n and g2n are the constants resulting from the resolution of the linear system due 
to the boundary and interface conditions. 

Finally, in Eq. (9) it is necessary to apply a Laplace transform inversion method. 
In this work, the inversion will be performed through the Fixed Talbot (FT) algorithm 
[13], thus resulting in Eq. (10): 
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where   
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Here, r is a parameter based on numerical experiments and M is the number of 
terms in the summation in the FT algorithm. For more details, see the work [14]. 

3. CONCLUSION  

The main objective of this work was to describe a new methodology called  -

ADMM to obtain a solution of the fractional two-dimensional diffusion-advection 
equation, considering a non-homogeneous PBL. In this proposal, the ADMM method 
is used, which provides a semi-analytical solution based on the discretization of PBL 
in sublayers, and the advection-diffusion equation is solved by applying the Laplace 
transform technique, standing out as a novelty the inclusion of the conformable 
derivative. The next steps consist of using the obtained solution to simulate the 
dispersion of pollutants in the atmosphere in physical situations related to atmospheric 
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stability and soil deposition problems. Expected through the  -ADMM methodology to 

obtain a better description of the diffusion process of atmospheric pollutants.  

Acknowledgment 

The authors would like to thank FAPESB and Centro Universitário SENAI-
CIMATEC for their financial and logistical support. 

4. REFERENCE 

1 VILHENA, M. T. B.; RIZZA, U., DEGRAZIA, G., MANGIA, C., MOREIRA, D., and 
TIRABASSI, T., 1998. “An analytical air pollution model: Development and 
evaluation”, Contrib. Atmos. Phys, vol. 71, pp. 818-827.  

2 MOREIRA, D.M., RIZZA, U., VILHENA, M.T., GOULART, A., 2005. Semi-analytical 
model for pollution dispersion in the planetary boundary layer. Atmospheric 
Environment 39 (14), 2689–2697.  

3 KHALIL, Roshdi, et al. 2014. A new definition of fractional derivative. Journal of 
Computational and Applied Mathematics, 264: 65-70. 

4 ORTIGUEIRA, M.D. and MACHADO, J.A.T., 2015. What is a fractional derivative? 
Journal of Computational Physics 293, 4-13. 

5 TARASOV, V.E., 2018. No nonlocality. No fractional derivative. Communications in 
Nonlinear Science and Numerical Simulation 62, 157-163. 

6 CAPUTO, M.  and FABRIZIO, 2015. M. Prog. Fract. Differ. Appl.1, 73 (2015). 

7 XAVIER, P.H.F.; NASCIMENTO, Erick Giovani Sperandio; MOREIRA, Davidson 
Martins. 2019. A model using fractional derivatives with vertical eddy diffusivity 
depending on the source distance applied to the dispersion of atmospheric pollutants. 
Pure and Applied Geophysics, 176.4: 1797-1806 

8 SILVA, J.R.D.; XAVIER, Paulo Henrique Farias; PALMEIRA, Anderson da Silva; 
MOREIRA, Davidson Martins. 2020. "Fractional calculus: an approach to the 
atmospheric dispersion equation using conformable derivative", p. 594-602. In: Anais 
do VI Simpósio Internacional de Inovação e Tecnologia. São Paulo: Blücher, 
ISSN 2357-7592, ISBN:2357-7592, doi:10.5151/siintec2020-fractionalcalculus. 

9 SILVA, J.R.D. 2021. Fractional calculus: historical, philosophical aspects and 
relevance in modeling and problem solving / José Roberto Dantas da Silva, 73-fl, 
Dissertation (Master’s in computational modeling and industrial technology) – PPG-
MCTI – Centro Universitário SENAI-CIMATEC, Salvador-Ba. 

10PALMEIRA, Anderson; Xavier, PAULO; MOREIRA, Davidson. Simulation of 
atmospheric pollutant dispersion considering a bi-flux process and fractional 
derivatives. Atmospheric Pollution Research, 2020, 11.1: 57-66. 

11GOMEZ-AGUILAR, J.F., MIRANDA-HERNANDEZ, M., LOPEZ-LOPEZ, M.G., 



VII INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY (SIINTEC) 
One Planet, one Ocean and one Health - 2021  

ISSN: 2357-7592       
 

ALVARADO-MARTINEZ, V.M. e BALEANU, D., 2016. Modeling and simulation of the 
fractional space-time diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 
30, 115-127. 

12 MOREIRA, D.M. and VILHENA, M.T., 2009. Air Pollution and Turbulence: Modeling 
and Applications. CRC Press, Boca Raton, Florida, 354 pp. 

13 TALBOT, A. 1979. The accurate numerical inversion of Laplace transforms. IMA 
Journal of Applied Mathematics, 23(1), 97-120. 

14 COSTA, C. P., VILHENA, M. T., MOREIRA, D. M., & TIRABASSI, T. 2006. Semi-
analytical solution of the steady three-dimensional advection-diffusion equation in the 
planetary boundary layer. Atmospheric Environment, 40 (29), 5659-5669. 

ARYA, S.P., 2003. A review of the theoretical bases of short-range atmospheric 
dispersion and air quality models. Proceedings of the Indian National Science 
Academy 69A (6), 709–724. 

DEGRAZIA, G.A., MOREIRA, D.M., VILHENA, M.T., 2001. Derivation of an eddy 
diffusivity depending on source distance for vertically inhomogeneous turbulence in 
a convective boundary layer. Journal of Applied Meteorology 40, 1233–1240. 

GRYNING, S.E., LYCK, E., 1984. Atmospheric dispersion from elevated sources in an 
urban area: comparison between tracer experiments and model calculations. 
American Meteorological Society 23, 651–660. 

HANNA, S.R., 1989. Confidence limit for air quality models as estimated by bootstrap 
and jacknife resampling methods. Atmospheric Environment 23, 1385–1395. 

LIN, J.S., HILDEMANN, L.M., 1997. Analytical solutions of the atmospheric diffusion 
equation with multiple sources and height-dependent wind speed and eddy 
diffusivities. Atmospheric Environment 30, 239–254. 

MOREIRA, D.M., VILHENA, M.T., TIRABASSI, T., BUSKE, D., COTTA, R.M., 2005b. 
Near source atmospheric pollutant dispersion using the new GILTT method. 
Atmospheric Environment 39 (34), 6290–6295.  

MOREIRA, D.M., TIRABASSI, T., CARVALHO, J.C., 2005c. Plume dispersion 
simulation in low wind conditions in stable and convective boundary layers. 
Atmospheric Environment 39 (20), 3643–3650. 

MOREIRA, Davidson; MORET, Marcelo. A New Direction in the Atmospheric Pollutant 
Dispersion inside the Planetary Boundary Layer. Journal of Applied Meteorology 
and Climatology, 2018, 57.1: 185-192. 

OETTL, D., ALMBAUER, R.A., STURM, P.J., 2001. A new method to estimate diffusion 
in stable, low-wind conditions. Journal of Applied Meteorology 40, 259–268. 

TIRABASSI, T., 1989. Analytical air pollution advection and diffusion models. Water, 
Air and Soil Poll 47, 19–24. 



VII INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY (SIINTEC) 
One Planet, one Ocean and one Health - 2021  

ISSN: 2357-7592       
 

ZANNETTI, P., 1990. Air Pollution Modeling. Computational Mechanics 
Publications, Southampton, 444pp.  

 

 

 

 

 

 

 

 

 

 

 

 

 


