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Abstract: This research aims to use the Adomian decomposition method for the 
exact solution of differential equations in modeling mechanical vibratory processes, 
and for this purpose, a literature review on this method is adopted and promotes the 
solution of linear and non-linear ordinary differential equations. The method is the 
Taylor series decomposition of the nonlinear operator of the differential equations in 
standardized assembly with the generation of a convergent series of the respective 
operator. Investigations about the method are presented in the form of preliminary 
research results and were explained, described and applied to the mathematical 
modeling of a mechanical oscillator, so that the expression to describe the same and 
then the method was applied to bring the surface your mathematical solutions. In 
application to the real model, the experimental data were based on virtual tools as 
well as the entire laboratory environment; however these factors would not interfere 
with the reliability of the preliminary results that indicate the stability of the analytical 
solution found. 
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MODELAGENS DE PROCESSOS VIBRATÓRIOS MECÂNICOS NÃO-
LINEARES COM O USO DO MÉTODO DE ADOMIAN: RESULTADOS 
PRELIMINARES E APLICAÇÕES NA ENGENHARIA MECÂNICA 

 

Resumo: Esta pesquisa objetiva o uso do método de decomposição de Adomian 
para a solução exata de equações diferenciais em modelagem de processos 
vibratórios mecânicos e para tal adota-se uma revisão de literatura sobre este 
método e promove a solução de equações diferenciais ordinárias lineares e não-
lineares. O método trata-se da decomposição em série de Taylor do operador não-
linear das equações diferenciais em montagem padronizada com a geração de série 
convergente do respectivo operador. As investigações acerca do método são 
expostas sob a forma de resultados preliminares de pesquisa e foram explanadas, 
descritas e aplicadas à modelagem matemática de um oscilador mecânico, de 
maneira que a expressão para descrever o mesmo e em seguida aplicou-se o 
método para trazer a tona suas soluções matemáticas. Em aplicação ao modelo real 
os dados experimentais foram baseados em ferramentas virtuais bem como todo o 
ambiente de laboratório, contudo estes fatores não interfeririam na confiabilidade 
dos resultados preliminares que indicam a estabilidade da solução analítica 
encontrada.  

Palavras-chave: Equação; Diferencial; Adomian; Operador; Vibração. 
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1. INTRODUCTION 

     Nowadays, the prediction of behavior and nuances of events in several physical 
systems has been a necessity demanded by several areas of Engineering, especially 
Mechanical Engineering, where situations, when physically and mathematically 
modeled, do not have known analytical solutions, however, in specific situations it is 
possible, with the proper mathematical treatment, to determine approximate 
numerical solutions [1, 2, 3, 4]. 

     The presence of nonlinear terms in physical phenomena represents in a more 
visceral way: an uncertainty. The less we know about what is being studied, the less 
sure we are of how that component or system will behave for the estimated time 
interval of its necessary life, and for the reliability of projects it is extremely important 
to know, for example, when a machine element such as a bolt or a structural element 
such as a beam will suffer a fracture for having approached the end of its fatigue life, 
or when a certain machine will need to be calibrated or undergo maintenance again 
due to the continuous wear of number of cycles of use [3, 4, 5]. 

     In this context, the Adomian Decomposition Method arises, which proposes to 
solve any and all differential equations analytically, using as a tool some parameters 
that the author of the method himself created. The Adomian Decomposition Method 
encompasses a number of advantages, the main ones being its purely analytical 
nature, which causes its values to be obtained algebraically, however, it is worth 
noting the convergent nature of the operative, and it can even be exact depending on 
the equation treated [3, 4]. 

      

2. METHODOLOGY 

The Adomian decomposition method basically consists in applying differential 
operators to the equation in question, so that a series expansion of this operator is 
performed, more precisely a Taylor series, and one of the main postulates of the 
Adomian Decomposition method [4, 5, 6] considers that the solution can be 
decomposed as a series of functions, which in mathematical terms leads us to the 
following general term: 

  





0

)()(
n

n xyxy  ( 2.0 ) 

      Thus, to describe the method, it is necessary, in the first instance, to explain the 
characteristics of the linear operator applied by Adomian, starting from the following 
expression, and the initial design proposed [5,6]: 

 F   )()( xgxy   ( 2.1 ) 

     The following conjecture applies: 

 F = L + R + N ( 2.2 ) 

       The expression denoted above is also a mathematical function and represents 
an operator of differential nature that is a mixture of the various meanings that an 
equation can contain, i.e., the linear and nonlinear aparts [6].       

       Rearranging the initial expression into terms according to the differential operator 
has: 
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 L )(xy R )(xy N )()( xgxy   ( 2.3 ) 

          The effective calculation is recommended to initially isolate the L operator, thus 
obtaining: 

 L )(xy )(xg R )(xy  - N )(xy  ( 2.4 ) 

     In the Adomian Differential Decomposition Method, the differential operator is 
necessarily of an inverse nature. Thus, applying the knowledge about Linear Algebra 
operators, the inverse operator is applied to both sides of the previous expression, 
obtaining: 
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     Since the applied differential operator admits of an invertible nature, it can be 
translated as follows, since the operation opposite to derivation is integration: 
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     Applying the translation of the differential operator denoted above to the previous 
expression, generalizing it and performing its operation, we obtain: 
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N 1)]( Cxy   ( 2.7 ) 

     In the expression above, one more term appears in the operation, this term is 
named is the integration constant 1C , which by definition must appear after solving 
the operation that names it, moreover, it is related to the initial conditions proposed 
by the problem [6]. 

       At this stage, Adomian assumes that the nonlinear part of the expression is an 
analytic function and therefore can and should be written according to the so-called 
Adomian Polynomials, which have the following structure: 
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     Keeping in mind the postulates described above, and in Adomian's annals, 
making the necessary substitutions, we get: 
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     In his postulate Adomian assumes that the solution of the equation can be given 
by the infinitesimal sum, following a convergence criterion, of its umpteenth given 
solutions of an inverse differential operator applied to the same expression in its 
linear parts and in its nonlinear part, is obtained from the sum of the so-called 
Adomian Polynomials obtained analytically iteratively from its previous terms [6, 7]. 

       The )(xy  solutions of the expression, which are the plots of the infinite series 
shown above, can and should be calculated by comparing the two sides of the 
equality, thus obtaining the following conjecture for the initial plot: 
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     So, in general, there are: 
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     At this point it is worth pointing out, once again, that the other )(xy  solutions are 
obtained iteratively by means of the above equations, also taking into account that 
the terms after the initial portion depend directly on the Adomian polynomials, as 
postulated in his original paper [3, 4] and also in his later work [4, 5]. 

     To obtain such polynomials: 
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 . . .  

          However, for the initial case, the expression for Adomian Polynomials and 
according to Ronni's translation [7] the equation can also be expressed as follows: 
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     From this point on, you arrive at a structure such that you have the following 
algorithm: you find the initial portion 0y ; from 0y  is found 0A ; from 0A  is found 1y ; 

from 1y  is found 1A ; from 1A  is found 2y ; and this process continues until the 
expression begins to converge, or the null value, in the latter case, would indicate 
that both the equation and the method become exact and no longer converge [5, 6, 
7, 8]. 

       In this case, the initial Adomian polynomial is: 

 )(0 xA N )(0 xy  ( 2.17 ) 

     And the other Adomian polynomials would be as follows: 
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 . . .  

     And consecutive to the generating formula to obtain the final value )(xy  of the 
solution of the equation, it remains to sum the values obtained from the solutions 

)(xyn  arranged in the form of a Taylor series, as predicted by the postulate. 

 nn n yyyyyyyxy 
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 ( 2.22 ) 

      Finally, the result of the expression converges to )(xy  whenever there is a   
value greater than or equal to 0 and less than 1. 

      Moreover, it must belong to the group of naturals, satisfying the following relation: 

  nn yy 1  for every 0nk  . 
Moreover, it must  belong to the group o f naturals, sati sfying the foll owing rel ati on: for every . 

 

3. RESULTS AND DISCUSSION 

3.1. Characteristics of vibratory processes 

   In life we come across numerous physical phenomena associated with mechanical 
vibrations and their manifestations. Vibration is a physical phenomenon and is 
generally associated with the dissipation of kinetic energy and its eventual 
conversion from one type of energy to another for various reasons; among the most 
common are discontinuities of the materials involved in the system. In other words, 
vibration is an indicator of problems or discontinuities in systematic mechanical 
processes [8, 9, 10, 11]. 
     To explain the method in practical terms, consider the following schematic 
diagram: 

Image #01: Free-body diagram of an oscillatory system 

 
(Source: Author's own; 2021) 

 
     The system consists of a cart of mass 1m  on which a rF  resultant force is applied 

to the abscissa axis, designating its trajectory. Here there is also an elastic force elF  

from the spring, given in the opposite direction to the motion of the cart, also the 
frictional force atF  occurs between the wheels of the vehicle and the firmament [11, 

12]. 
      Finally, we highlight the forces present in the vertical direction, which in this case 
are the contact forces, the P  weight, and N  the normal action force. It is worth 
noting that the mass m1 is treated here as the mass of the assembly as a whole. 
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3.2. Normalization to the Adomian Differential Decomposition Method 

     Following the algorithm mentioned above during the description of the method, 
the first step is based on deciphering the terms of the equation, classifying them as 
its linear, nonlinear and auxiliary function, if any. 
      The following equation will then be considered for the execution of the method: 

 tgty
dt

yd
16322

02

2

   ( 3.1 ) 

     Since the physical situation considered refers to a mass spring oscillator system, 
there are many variables that influence the behavior of the spring and consequently 
will influence the modeling of the system, analogously, we can associate the 
expression to the behavior of a nonlinear spring in the system [13, 14, 15]. 
      Then, the following operative procedure is followed, in the expression, the term: 

 L = 
2

2

dt

yd
, ( 3.2 ) 

     In this case, it is the highest order derivative term. 
     The linear R term is given by: 

 R = gy   22
0  ( 3.3 ) 

     The nonlinear N term: 
 N = 3t  ( 3.4 ) 

     Finally, the auxiliary function of independent variable )(xg  is given by: 

 txg 16)(   ( 3.5 ) 

     Then the Adomian inverse operator is applied to both sides of the equation, thus 
obtaining: 
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          It is worth noting that for the execution of the equation there are the following 
boundary conditions: 

 0)0( yy   ( 3.7 ) 
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 ( 3.8 ) 

     Decomposing the operation into all the terms of the expression, we arrive at: 
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         Here also   another constant of the integration process arises. 
         Applying the boundary conditions proposed by the problem, it is possible to 
obtain: 
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          Thus, applying the assumption in 2.0. Equation, we have the following 
translation: 
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     In addition to applying the above assumption, one must assume that the nonlinear 
part of the equation can be written in terms of Adomian polynomials, in this particular 
case, the following expression is obtained: 
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          In this case, for Adomian polynomials the independent variable is, representing 
the system and the non-permanent regime. 

     Applying it to the expression, you get: 
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     After performing the comparison process with the two ends of the equation, the 
following recurrence relation is verified: 

 00 )( ty  ( 3.14 ) 

     Generalizing the solution term of the equation, we have: 
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     Where the 0A  initial Adomian polynomial is given by: 

 )(0 tA N 3)( tty   ( 3.16 ) 

     We will obtain: 
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     Thus, you have: 
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     Similarly, we have the posterior Adomian polynomial given by: 
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     Bringing as a result: 
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     The next solution term, following 2.11. Equation has value: 
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     In turn, using the term obtained previously, one obtains: 
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     Solving can be done up to this point and the results will be satisfactory, that is, up 
to the 3A  term, however, the more iterations that are done the better the 

convergence of the method, and can raise the solution brought by the equation to 
accuracy. 

     However, if we go back to the proposed statement in the situation, the spring 
employed is not linear, assuming the use of a conical helical spring, for example, its 
oscillator term then depends on other material quantities such as the shear modulus 
(G ), specific to the spring material, the nominal diameter of the coil ( 0D ) the number 

of active coils ( an ), and the torsional moment of inertia of the spring ( J ).  

     Thus, performing the appropriate substitution: 
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     Therefore, the final solution value of the modeled and idealized equation for the 
situation using the Adomian Differential Method is given by: 

 

 







































































































































n
a

aa

aa

n n

y
ytytytyt

y
nD

mJG

y
nD

mJG
ty

nD

mJG

yt

nD

mJGt
y

nD

mJG

tygyxy

...
806419712700672190400

94
102

30464

4
48

4
17

112

34

4

4

)()(

7121112233520
2

26

3
0

13
0

4

8

3
0

11722

8

3
0

1

774

3
0

1
4

3

2

3
0

1

00









 
( 3.24 ) 

 

4. CONCLUSION 

With the above, the Adomian decomposition method was presented in 
application to mechanical vibratory systems in order to prove capable of presenting 
exact solutions for them, including for nonlinear modeling, resulting effective for day-
to-day applications in Mechanical Engineering and especially for vibratory systems in 
general. 

These results are preliminary in the current research proposal, however, we 
already have a mechanical oscillatory system, linear and nonlinear, with an exact 
solution for theoretical values, leaving as next actions the proposal to use the 
associated database for testing with real values. 
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