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Abstract:  

This study aims to investigate the potential of fractional derivatives in atmospheric 

dispersion modeling. Therefore, an analytical solution of the two-dimensional fractional 

advection-diffusion equation is proposed using GILTT and conformable derivatives 

methods. The novelty of this study is the insertion of a fractional parameter in the 

diffusive term considering the conformable derivative, considering the anomalous 

behavior in the diffusion process, resulting in a new methodology here called α-GILTT 

method. The simulations were compared with the moderately unstable data from the 

Copenhagen experiment and the best results are for the fractional parameter α = 0.99. 
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Resumo: Este estudo tem como objetivo investigar o potencial de derivados 

fracionários na modelagem de dispersão atmosférica. Portanto, uma solução analítica 

da equação bidimensional de advecção-difusão fracionada é proposta usando 

métodos GILTT e derivados conformáveis. A novidade deste estudo é a inserção de 

um parâmetro fracionário no termo difusivo considerando a derivada conformável, 

levando em consideração o comportamento anômalo no processo de difusão, 

resultando em uma nova metodologia aqui denominada método α-GILTT. As 

simulações foram comparadas com os dados moderadamente instáveis do 

experimento de Copenhagen e os melhores resultados são para o parâmetro 

fracionário α = 0.99. 
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INTRODUCTION 

Anomalous diffusion is present in a wide variety of experimental scenarios in 

physics, chemistry, biology, and other branches of engineering, being an expanding 

field of research that has attracted a lot of attention from the scientific community. An 

important application of anomalous diffusion is related to the description of turbulent 

diffusion in the atmosphere. The pioneer in understanding this phenomenon was 

Richardson [1], who, based on his observations, concluded that the increase in the 

width of the plumes of pollutants emitted by point sources occurred in the proportion 

of t

, with 3  , inconsistent with the typical diffusion, where there are 1  . Although 

turbulent diffusion is often modeled using the classical (integer-order) advection-

diffusion equation, this type of approach has proved ineffective in describing the 

anomalous diffusion caused by turbulence [2]. 

In recent years, fractional calculus has proven to be the most adequate 

mathematical theory to deal with the complexity of anomalous diffusion, as described 

in articles [3-6]. Although they are linear operators, fractional derivatives do not have 

the same operational properties as Newton's derivative, such as the product rule, 

quotient rule, and chain rule. The absence of these properties in the fractional 

calculation causes a series of obstacles in the mathematical handling of models, often 

leading to the need for complex numerical methods. These inconveniences have led 

to the development of the local fractional derivative, which enjoys most of the 

properties of the integer-order derivative [7-10]. 

This article aims to investigate the potential of conformable derivative in modeling 

the dispersion of air pollutants and in the description of anomalous diffusion. For this, 

an analytical solution of the fractional, two-dimensional, and stationary diffusion-

advection equation is proposed, using the GILTT (Generalized Integral Laplace 

Transform Technique) [11-19] and conformable derivatives methods [9]. The novelty 

of this study is the insertion of a fractional parameter in the diffusive term, together 

with the conformable derivatives, considering the anomalous and non-differentiable 

behavior of the problem, resulting in a new methodology here called the α-GILTT 

method. 

It should be noted that the analytical solution of the diffusion-advection equation 



 

proposed in this work, considering a fractional parameter in the diffusive term and 

variable coefficients, has no known solution in the literature. The proposed model was 

solved and compared with data from the Copenhagen experiment, which are 

considered to have moderately unstable atmospheric stability. 

2. METHODOLOGY 

To apply the α-GILTT method, the classical two-dimensional fractional advection-

diffusion equation is modified by inserting fractional operators in the diffusive term, 

obtaining: 
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where  u z  is the vertical profile of the wind speed in the longitudinal direction,  ,c x z  

is the mean concentration of the passive contaminant, and  zK z   is the coefficient of 

vertical diffusion. In the direction of the spatial coordinate z, the boundary conditions 

are zero flux on the ground and at the height of the planetary boundary layer (PBL), 

and the source condition is given by  
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where Q  is the source intensity, sh  is the source height, and   is the delta-Dirac 

function. 

To correct the dimensionality of the proposed model, the suggestion provided in 

the work [20] was adopted, introducing an auxiliary factor   [21] in equation (2.1):  

 
1

1

dz dz

d d
 



 
   (1.3) 

Relation (2.3) is valid if the parameter     has a length dimension [L]. Thus, the 

fractional representation of Eq. (2.1), to be solved in this work, is given by: 
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The conformable derivative method [9] is given by: 
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Thus, the first step is to apply to the diffusive term of equation (2.4) the relation (2.5): 
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To obtain a more general solution of Eq. (2.6), the following equality will be 

considered: 
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thus, by substituting Eq. (2.7) in Eq. (2.6), we obtain: 
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Applying the chain rule to the diffusive term of Eq. (2.8) [11], and inserting the 

necessary simplifications, we obtain the equation of the auxiliary problem:   
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and this problem has the traditional solution given by: 
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The next step is to expand the concentration  ,c x z into a series, the final solution 

being: 
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where  iA x , with n = 0, 1, 2, .... being the unknown coefficients of the series, and N 

the norm.  

We apply Eq. (2.12) in Eq. (2.8) to determine the coefficients  iA x  and then 

multiply by the integral operator  
0

1
h

j
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z dz
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 , obtaining: 
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Rewriting Eq. (2.13) in matrix form, we have: 

     0A x GA x     (2.14) 

where  A x  represents a vector, G is the matrix 
1G B E  and,   00A A , the initial 

condition.  

The initial condition is obtained by applying the same procedure to expand  ,c x z

. Next, Eq. (2.14) is then solved by applying the Laplace transform and the 

diagonalization process [23], providing the following transformed solution: 
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Applying the inverse Laplace transform to Eq. (2.15), we have: 
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where D represents the diagonal matrix of eigenvalues, W the matrix of the 

eigenfunctions of G, 𝑊−1 its inverse and I represent the identity matrix. 

The elements of the matrix  sI D  have the form  is d , where id  being the 

eigenvalues of the matrix G or the elements of the diagonal matrix D. As  sI D  

being a diagonal matrix, in matrix algebra its inverse is given by the multiplicative 

inverse of the main diagonal elements. Thus, the elements of the matrix  
1

sI D


  take 

the form 
1

is d
, whose inverse Laplace transform is ixd

e


.  

Thus, the solution of the problem proposed by equation (2.4) is finally obtained 

and given by Eq. (2.12). 

 



 

3. RESULTS AND DISCUSSIONS 

The data presented in this section were generated from meteorological information 

from the Copenhagen experiments [24]. The model was parameterized with the 

vertical diffusion coefficient proposed by Degrazia [25], logarithmic wind profile, and 

for simplicity, correction of the dimensionality 1   m.    

Table I displays the statistical indices generated by the model considering different 

values of the fractional parameter. The model performance was statistically evaluated 

using the bootstrap procedure described by Hanna (1989) and the following metrics: 

Normalized mean square error (NMSE) =(𝐶𝑜 − 𝐶𝑝)2 𝐶𝑝⁄ 𝐶𝑜,  

FAT2 = fraction of data for which 0.5 ≤ (𝐶𝑝/𝐶𝑜) ≤ 2, 

Correlation coefficient (COR) = (𝐶𝑜 − 𝐶𝑜)(𝐶𝑝 − 𝐶𝑝 𝜎𝑜𝜎𝑝⁄ , 

Fractional bias (FB) = 𝐶𝑜 − 𝐶𝑝 0.5(𝐶𝑜 + 𝐶𝑝)⁄ , 

Fractional standard deviation (FS) = (𝜎𝑜 − 𝜎𝑝) 0.5(𝜎𝑜 + 𝜎𝑝)⁄ , 

where the subscripts o and p refer to the observed and predicted quantities, 

respectively, and the overbars indicate average values. The FB reflects whether the 

expected quantities underestimate or overestimate the observed values. The NMSE 

represents the dispersion of the model output in relation to the dispersion of the data. 

The best results are expected to give values close to zero for the NMSE, FB, and FS 

and close to 1 for COR and FAT2.   

Taking as reference the observed statistical indices for 1   (integer-order 

advection-diffusion equation), the best indicators were obtained with 0.99   . 

Although the parameters Nmse, Cor, and Fa2 are relatively close for the two 

simulations, it is observed that the Fb and Fs indicators are better for 1  . It should 

be noted that this experiment has moderately unstable atmospheric stability, and 

values very close to one are expected for the fractional parameters (low fractionality). 

Effectively, the fractional parameter for this experiment, comparing the results for 

0.99    and 1  are statistically very similar. 



 

 

Table I. Model statistical indices using data from the Copenhagen experiment. 

Case 
 

Nmse Cor Fa2 Fb Fs 

I 1.00 0.08 0,91 1.00 0.11 0.29 

II 0.99 0.10 0.91 1.00 0.17 0.32 

III 0.98 0.13 0.91 1.00 0.22 0.35 

IV 0.97 0.17 0.91 1.00 0,28 0.39 

 

 

4. CONCLUSION 

The present work proposes a new methodology to obtain the solution of the 

fractional advection-diffusion equation based on the GILTT methods and conformable 

derivatives. This methodology allows using a diffusion coefficient that depends on the 

z variable, thus considering the inhomogeneity of turbulence in the vertical direction. 

Although the result with the whole order fractional parameter presented the best result, 

considering the data from the Copenhagen experiment, the influence of this parameter 

in the simulations was clearly observed. The next step of the research will be to insert 

fractional parameters in all derivatives of the equation, submitting the model to strongly 

convective (very unstable) atmospheric conditions, using data from the Prairie Grass 

experiment.   
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